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Abstract

manipulation of social group composition.

Background: In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a
particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects
on individual behavior, and variable experiences can even result in consistent individual differences and constrained
behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral
optimization at the social group level, few studies have explored how social experiences accumulate over time, and
the mechanistic basis of these effects. In the current study, | evaluate how sequential social experiences affect
individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey
bee (Apis mellifera). To do this, | combine a whole colony chronic predator disturbance treatment with a lab-based

Results: Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels
overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display
aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However,
group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make
up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences
the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene
expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not
subsequent social group experience or behavioral outcomes.

Conclusions: In highly social animals with collective behavioral phenotypes, social context may mask underlying
variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect behavioral tendency,
while behavioral outcomes are further regulated by social cues perceived in real-time.
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Background

For social animals, behavioral phenotypes exist at both
the individual and group levels [1-8]. Understanding the
mechanistic and social factors that shape phenotypes at
these two levels remains a fundamental challenge in
social behavior research. In some cases, the behavioral
tendency of the most extreme group member, or the
average tendencies across group members, are good
predictors of group-level behavioral phenotypes [9-11].
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In highly structured societies however, individuals con-
tinuously modulate their behavior in response to social
cues from colony mates, a process that optimizes group
level phenotypes depending on environmental condi-
tions and pre-set heritable rules [2, 12-17]. As a result,
individual behavior varies across social contexts, a
phenomenon known as behavioral flexibility [18—20].
Despite the highly flexible nature of individual behavior
in complex societies, some social inputs can have long
lasting effects on both behavioral tendencies and behav-
ioral flexibility [18, 21], influencing individual behavioral
phenotype in novel social scenarios encountered later in
life. One well-known context for this phenomenon is that
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of early-life social experiences, which can have persistent
effects throughout life, and may even be robust to add-
itional social inputs [22]. In the field of developmental
plasticity, a growing body of literature attempts to predict
how individuals weigh information from their past and
current environments to optimize their phenotypes [23].
Empirical studies that assess how social experiences accu-
mulate over time to affect individual behavioral outcome
and flexibility are also necessary to interpret behavioral
optimization at the group level.

In the honey bee (Apis mellifera), worker bees perform
aggressive behaviors in the context of nest defense,
which is a collective activity that is modulated at the
colony level by ecological conditions [24—26]. For indi-
viduals, responsiveness to aggression inducing cues and
the decision to engage in tasks associated with nest
defense are influenced both directly by ecological cues
and indirectly by social interactions with nestmates;
these interactions occur in a variety of contexts through-
out both the pre-adult and adult life stages [25, 27-31].
Despite the large degree of social sensitivity inherent to
aggressive behaviors, it is unknown whether or how an
individual’s sequential social experiences cumulatively
influence aggression levels or behavioral flexibility in de-
fensive social contexts. If social information accumulated
over time influences behavioral outcome, there may be
constraints to individual and group level behavioral
plasticity that prevent an optimal response to given
ecological conditions [32]. Moreover, the group-level
impacts of these cumulative individual effects are both
unknown and difficult to measure due to the fact that
honey bees live in large, complex societies composed of
about 20,000- 40,000+ individual workers [1, 33]. The
first goal of the current study is to evaluate whether so-
cial experiences early in adult life influence individual
behavioral outcome, flexibility, and group level aggres-
sive response in subsequent social contexts. To do this
in the highly social honey bee, I combine small scale
field and lab based social manipulations and behavioral
assays of aggression.

The cumulative effects of social experiences on behavior
may depend on the nature of the underlying mechanisms
that entrain previous experiences relative to those that
regulate behavioral outcome on a more proximal time-
scale. In some cases, these mechanisms operate at differ-
ent levels of biological organization; for example, early-life
social experiences may affect brain structure, while subse-
quent experiences modulate brain biochemistry [34]. In
the context of honey bee aggression, genomics studies
demonstrate that brain gene expression patterns track
socially-induced behavioral variation, not only for stable
shifts in aggression, but also for more rapid and transient
changes in phenotype that occur on the order of minutes
[24, 25, 28]. Moreover, shifts in aggression across very
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different timescales and contexts are associated with
transcriptional variation in overlapping sets of genes
[25, 28, 35]. These findings predict that transcriptomic
patterns will track behavioral outcome associated with
sequential social experiences, for example, resulting in an
interaction effect of multiple experiences on gene expres-
sion. In addition to the behavioral analyses described
above, the second goal of the current study is to evaluate
how transcriptomic patterns reflect cumulative social
experience and whether they parallel behavioral effects.
To do this, I analyze a small set of previously published
honey bee aggression biomarker genes.

Methods

I manipulated early adult social experience by implement-
ing a full colony chronic disturbance paradigm following
Rittschof and Robinson [25]. Briefly, I constructed two
pairs of small colonies made up of about 4000 one-day-
old adult bees collected from 8 to 10 source colonies
headed by naturally mated queens. One-day-old bees were
combined and then assigned randomly across colonies of
each pair, such that a wide array of genotypes of European
descent were evenly represented across each pair. I
marked each bee on the thorax with paint to precisely
control colony size, and then introduced a naturally mated
queen to each colony. I provisioned hives with ad libitum
food, including a partial frame of pollen and a full frame
of honey. Colonies were provisioned with food because
young bees do not begin to forage in strong numbers until
6-7 days of age. However, colonies were allowed to forage
freely throughout the experiment (following [25]). I
established the hives in an apiary and commenced the
chronic disturbance paradigm [25]: one colony of the pair
(selected at random) was left undisturbed as a control,
while the other colony was exposed to a combination of
artificial alarm pheromone (an aggression-inducing social
cue) and physical agitation (opening the colony and lifting
and dropping frames in a controlled manner) on a chronic
basis (twice a day, once in the morning between 08:00 and
10:00 and once in the afternoon between 13:00 and 15:00)
over the course of the first 8 days of adult life. Relative to
the control, this treatment results in a highly robust and
significant decrease in aggressive behavior measured at
the colony level. This effect persists for at least 24 h
following the final disturbance [36]. Brain biomarker gene
expression patterns for chronically disturbed bees are also
consistent with low aggression [25, 36]. A range of behav-
ioral groups, including foragers, soldiers, and bees col-
lected from inside the hive show these brain gene
expression effects [25], which persist for 48—72 h follow-
ing the final disturbance treatment [25, 36]. Thus, this
artificial manipulation of the social environment results in
stable changes in both behavior and gene expression.
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Following this early-adulthood disturbance manipulation,
I collected bees for a second, laboratory-based manipula-
tion of social context. This experiment involved combining
bees originating from the disturbed and undisturbed
colonies together into new social groups, and assaying the
aggressive behaviors of these groups. This laboratory-based
manipulation was derived from the nestmate recognition
assay [37]. In previous work we showed that when kept in
small groups over a relatively brief time period (overnight),
bees originating from different colonies can discriminate
their new groupmates from foreign bees and respond
aggressively towards an intruder [36]. Thus, bees kept in a
small group in the lab develop a social identity that can be
used to investigate how individuals behave under different
social conditions.

To manipulate the social conditions in the lab, I
collected bees from disturbed and undisturbed colonies
and combined individuals into small social groups (8
bees per group) that differed in the ratio of disturbed to
undisturbed group members, a design analogous to
forming groups composed of different numbers of high
and low aggression personality individuals ([9], Fig. 1).
Groups consisted of 8 undisturbed, 6 undisturbed and 2
disturbed, 4 undisturbed and 4 disturbed, 2 undisturbed
and 6 disturbed, or 8 disturbed individuals. I performed
these collections on the evening of the 8™ day of colony
life, 5 h following the final disturbance treatment (prior

Page 3 of 10

to collection I first performed a short ~30 s field assay
to confirm that disturbed colonies showed the predicted
decreased aggressive response compared to undisturbed
colonies [25, 36]). To collect enough bees for the groups,
I opened each colony and vacuumed bees from the
frame containing capped honey. Collecting from the
honey frame maximized the chances that I collected
roughly the same distribution of bee task groups from
both colonies. By 8 days of age, small colonies composed
of single-aged bees stratify into a range of behavioral
groups (e.g., [38]) including nurses, foragers, and guards.
All of these castes could be present on the honey frame
and represented in this study. Bees were transferred to
plastic bags and anesthetized on ice for ~5 min until
sedated. Sedated bees were then transferred into petri
dishes in different ratios of disturbed and undisturbed
individuals. Sedation is required to eliminate conflict
among group members originating from two different
colonies (Rittschof, personal observation). I monitored
groups until all bees recovered from anesthesia, replacing
dead bees as needed. During this monitoring period, I
confirmed that there were no aggressive interactions
between bees as a result of combining individuals from
two different colonies into a single dish. I repeated this en-
tire experiment, including colony construction, chronic
disturbance, and the group collections and behavioral
across two pairs of colonies. During the second replicate, I

8 day whole-
colony
treatment

N=2 trials

Overnightin lab priorto Intruder Assay

N=20 per treatment repeated for two trials

treatment groups with docile one-day-old adult bees (green)

Disturbed

¥

TONETINEE
G EHE

Overnightin lab with naive one-day-old bees

Fig. 1 Experimental design. | constructed two pairs of experimental colonies. Each member of the pair was identical in terms of number of
individuals, age, and genetic background. One of each pair was disturbed on a chronic basis for 8 days while the other was left undisturbed to
generate low (disturbed, blue) and high (undisturbed, yellow) aggression individuals. We collected and anesthetized individuals, and then
combined them into groups of eight for the lab-based assay of aggression. In the second replicate (the second pair of colonies), we added two

Undisturbed

One-day-old

5588 (0685 o
5585/ \0§83

N=20 per treatment in trial 2




Rittschof Frontiers in Zoology (2017) 14:16

added two treatment groups to the 5 listed above. These
groups were composed of 6 highly docile one-day-old bees
(originating from a single, naturally-mated colony) and
either two undisturbed or two disturbed bees. This
additional treatment allowed me to investigate how
disturbed and undisturbed individuals further alter their
behavior in the presence of individuals that are highly do-
cile and largely unresponsive to aggressive cues. In this
case, the increased docility is a function of age and not
social experience, but both factors contribute to variation
in individual aggression in a natural colony context [28],
and so it is likely that individual behaviors influence group
members in comparable ways. For all groups, bees were
provisioned with ad libitum with 50% sucrose, and petri
dishes were transferred to a dark 34 °C incubator over-
night for behavioral assessments beginning the following
morning.

Behavioral assessments were performed between 08:00
and 15:00 the following day by two observers. Because
bees were paint-marked according to their colony of
origin I was unable to blind the experiment. Petri dishes
were transferred from the incubator to a temperature-
controlled room (25-30 °C) for behavioral analysis.
Dishes were arranged in random order and left undis-
turbed for one hour prior to the initiation of behavioral
observations. I assayed individual and group level ag-
gressive behaviors using the Intruder Assay as described
in [36]. Briefly, I collected an intruder bee from the en-
trance of a randomly selected colony, introduced this
bee through a small hole into the petri dish containing
the eight focal bees, and tallied aggressive behaviors
displayed towards the intruder bee. Because all bees
were paint-marked, I could assign tallies to either undis-
turbed or disturbed individuals. Aggressive behaviors in-
clude antennation, antennation with mandibles opened,
biting, mounting the intruder and flexing the abdomen,
and stinging. From these tallies I calculated an aggres-
sion index (a tally of aggressive behaviors weighted for
severity of behavior, [36, 39]) on a per bee basis, as well
as the total level of aggression displayed by the group
(on a per bee basis). Following behavioral observations,
bees were immediately flash-frozen in liquid nitrogen for
later gene expression analysis. Bees were stored separ-
ately as a function of social group (the ratio of disturbed
to undisturbed bees), but multiple groups of 8 bees were
mixed into a single container for storage.

Following protocols described in [25], I used quantita-
tive PCR to evaluate brain expression levels for four
biomarker genes. These genes were selected based on
previous microarray studies that showed a robust associ-
ation between brain expression levels and variation in
aggressive behavior across social, developmental, and
evolutionary contexts [28]. We further validated that
these genes are differentially expressed in the brain
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specifically as a function of chronic disturbance [25].
These four genes are involved in a range of pathways
including stress response and alcohol metabolism [25].
Though I have not demonstrated a causal relationship
between these genes and aggression level, they are
predictive of aggression across many timescales for be-
havioral variation, and so provide a means to compare
the effects of cumulative social experiences on the mo-
lecular state of the brain versus behavior.

I dissected brains following Schulz and Robinson [40]
and extracted nucleic acids using RNeasy kits including an
on-column treatment to remove genomic DNA (Qiagen,
Valencia CA, USA). I synthesized ¢cDNA from 200 ng
RNA using ArrayScript (Ambion, Life Technologies,
Grand Island, NY, USA) reverse transcriptase and a
spiked-in internal control to estimate the quality of the
synthesis. I performed qPCR on an ABI Prism 7900 in
triplicate 10 uLl reactions in 384-well plates using
PerfeCTa SYBR Green Fastmix (Quanta Biosystems,
Gaithersburg, MD, USA). I normalized biomarker genes
to the geometric mean of two constitutively expressed
control genes, Actin-1 (GB44311) and Gapdh (GB50902).
I verified that control gene expression showed low vari-
ance ([41], with Ct standard deviation = 0.18 (Actin-1) and
0.20 (Gapdh)), and I used two-tailed ¢-tests to verify that
expression values did not differ across treatment groups.
A stability analysis using GeNorm recommended using
the geometric mean of both genes as the endogenous
control [42].

All data was analyzed using JMP Pro 12.1. Behavioral
data were analyzed using non-parametric statistics
because assumptions of normality and equal variance
were not met in all comparisons. Observers showed
some variation in behavioral scoring, but there were no
significant effects of observer on the outcome of any
reported results. Gene expression data were analyzed
using a relative standard curve method (e.g., [43]), and
assessed for normality on a gene by gene basis. All genes
except GB53860 met assumptions for parametric
statistical analyses. For GB53860 I implemented non-
parametric tests and generalized linear models (noted in
text).

Results

I first compared per-bee aggression scores for each bee
type (undisturbed, disturbed, one-day-old) across all
small group laboratory aggression assays, regardless of
group treatment. As predicted based on previous studies,
disturbance history and age significantly predicted aggres-
sion scores in this overall analysis (Kruskal-Wallis Test,
X3 = 12.72, P < 0.0017), with undisturbed bees showing the
highest average aggression, and one-day-olds showing the
lowest. However, a subsequent analysis of aggression score
as a function of lab social group and disturbance history
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Fig. 2 Analysis of aggression as a function of social group.
Undisturbed bees showed relatively consistent aggression levels
regardless of social group composition while disturbed individuals
significantly modulated their aggression in response to social group
composition (top and bottom panels, respectively). “U”, “D”, and “DO"
indicate the number of undisturbed, disturbed, and one-day-old
bees in each group, respectively. A post-hoc analysis of disturbed
bee behavior, using a Wilcoxon Test for each pair, significantly
distinguished three treatment categories, 6U:2D and 4U:4D, 2U:6D,
and 8D and 2D:6DO0. Box hinges show the 1° and 3 quartiles,
whiskers indicate 1.5%IQR from the hinge, and the central tendency
line indicates the median. Data points represent scores for
individual replicates

showed significant variation in behavior as a function of
social group for disturbed bees only (Kruskal-Wallis
Test, undisturbed: X3 =4.33, P<0.36, disturbed: X3 =
12.86, P<0.012, Fig. 2). Thus, disturbed bees show
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greater behavioral flexibility as a function of social context
compared to undisturbed bees. Disturbed bee aggression
increased with decreasing numbers of undisturbed bees in
the group, and was highest in groups that contained
extremely docile one-day-old bees (Fig. 2). This suggests
that disturbed bees increase their aggression levels to
compensate for a shortage of high-aggression individuals.
Undisturbed individuals show relatively invariant aggres-
sion scores as a function of social group treatment, with
the exception of groups containing extremely docile one-
day-old bees, in which they increase their aggression effort
to some degree (Fig. 2). When I compared aggression for
disturbed and undisturbed bees kept together in the same
social group, disturbed bees were significantly less aggres-
sive in most cases (Wilcoxon Test blocked for group,
Fig. 3). As expected, one-day-old bees were significantly
less aggressive than their older group counterparts regard-
less of disturbance experience (Fig. 3).

Total group aggression scores differed slightly but not
significantly as a function of social group composition
(Wilcoxon Test, X2=3.99, P=0.68, Fig. 4). There was
no simple relationship between total group score and
the prior disturbance experience of individuals within
the groups. Notably, the groups that successfully killed
the intruder bee had significantly higher aggression
scores (Wilcoxon Test, X; = 21.56, P < 0.0001), suggesting
a strong relationship between scoring methods and a
biologically relevant aggression outcome; this outcome,
however, also did not vary as a function of group compos-
ition (Chi-squared Test, X2=559, P=047).

To determine whether sequential social experiences in-
fluence brain gene expression patterns, I used quantitative
PCR to evaluate mRNA levels for four genes identified as
aggression biomarkers in a previous study [25]. I evaluated
gene expression for disturbed and undisturbed individuals
from two group composition treatments, those kept in
mixed (4 undisturbed and 4 disturbed) versus uniform (all
disturbed or undisturbed) groups. For disturbed bees,
individuals across these two social group types showed
significant variation in behavior, with higher aggression
levels in the uniform groups (Fig. 2). I first assessed
whether biomarker expression predicted disturbance
history, and found significant effects in the predicted
direction for 3 of 4 genes (Table 1, Fig. 5) [25]. However, a
subsequent comparison of gene expression level compar-
ing bees kept in mixed versus uniform groups showed that
gene expression patterns did not differ as a function of
social group treatment even for disturbed individuals
(Fig. 5, Table 2). One gene, Inos, showed a trend towards
significance in the predicted direction for disturbed
individuals (P < 0.109). A regression analysis for this gene,
including disturbance history, lab social group treatment,
and their interaction, showed a significant effect of social
group across both undisturbed and disturbed individuals,
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Fig. 3 Comparison of aggression scores for undisturbed, disturbed, and one-day-old bees kept in the same social group. A comparison of aggression
scores for bees kept together in mixed groups showed that disturbed bees are typically less aggressive than undisturbed bees when kept together
(Wilcoxon Exact Test (one-tailed) 6U:2D X7 =4.01, P < 0.045, 4U4D X3 = 135, P < 00002, 2U:6D X} = 1.79, P < 0.18). Similarly, and as predicted, one-day-
old bees were less aggressive than nine-day-old bees, regardless of disturbance history (Wilcoxon Exact Test (one-tailed) 2U:6D0 X7 = 5.56, P < 0.0184,
2D:6D0 X3 =435, P < 0.037). Aggression scores for bees kept in uniform groups (8U, 8D) are shown for comparison. Box hinges show the 1% and 3
quartiles, whiskers indicate 1.5%IQR from the hinge, and the central tendency line indicates the median

suggesting some effect of social group composition on  brain gene expression overall. A similar analysis for the
brain genomic state, but no interaction between the two  other three genes (but using a generalized linear model
terms (whole model: F3 43 =4.69, P<0.0064, Disturbance  with a log link function for GB53860) showed no effect of
history: F = 9.42, P < 0.0037, Lab social group composition:  lab social group on gene expression, nor any interaction
F=4.16, P<0.048, interaction: F=0.224, P=0.64). A sig- effects for the sequential social experiences.
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Table 1 Overall, chronic disturbance had significant effects on
brain expression for 3 of 4 aggression biomarker genes

Gene (sample size) /S p

Inos (N=47) -3.02 0.002
Drat (N =46) =211 0417
GB53860 (N=47) 375 0.0003
Cyp6g1/2 (N=47) -1.70 0.0483

Values are the result of one-tailed t-tests (or a Wilcoxon Exact Test for GB53860)
to account for the hypothesized direction of change based on previous studies
[25]. Sample sizes represent the total number of individuals compared per test.
Significant differences are indicated in bold type face

conditions or heritable rules [2], which is not always the
case for other types of social groups [9]. As a result,
individual behavioral outcome is highly sensitive to
social context. Honey bee aggression is strongly socially
regulated, and the rules individuals use to modulate their
behavior seem to depend on the context for nest
defense. Previous studies evaluating the effects of social
group composition on individual and group level behav-
ior used colony-level manipulations varying ratios of
Africanized and European genotypes, which naturally
differ in aggression (Africanized bees are more aggres-
sive [29, 31]). When evaluating aggression displayed in
the context of mammalian predator defense, studies
generally find that individuals adjust their aggression
level to that exhibited by the predominant genotype in
the nest; European bees express higher aggression levels
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when kept in a colony with a majority of Africanized
individuals, and vice versa [28, 31]. As a result, group
level defensive effort in the context of a mammalian
predator attack is positively correlated with the number
of high aggression individuals present in the colony [31].
However, honey bees also defend their nest against
smaller arthropod threats, including conspecifics that try
to enter the colony and steal honey [44]. In the natural
nest context, increased robbing threat from neighboring
colonies results in higher numbers of bees guarding the
colony entrance at least temporarily [45]. Similar to my
present findings, and in contrast to the mammalian
defensive response, guarding shows a pattern of social
regulation consistent with negative feedback and pheno-
typic optimization at the group level; European honey
bees are less likely to initiate guarding behavior and
guard for shorter periods of time when living in colonies
composed primarily of the more aggressive Africanized
honey bee [29]. Thus, both negative and positive social
feedback could play a role in modulating individual ag-
gressive behaviors depending on context. In a previous
study we showed that disturbed colonies have a low
overall aggression level in response to a simulated large
predator attack [25]. However, in the current study I
find that disturbed bees are capable of reaching the
levels of aggression exhibited by undisturbed bees.
This could be because disturbed bees are less likely
to instigate an attack in a large-predator context, and
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Fig. 5 Gene expression data as a function of disturbance history and social group treatment. Inos, GB53860, and Cyp6g1/2 showed significant
differences in expression in the predicted direction as a function of disturbance history (Table 1, [25]). A pairwise analysis of the effect of

social group treatment within each disturbance history treatment showed no significant effects (Table 2), and a series of linear models
incorporating disturbance history, social group treatment, and their interaction, showed significant main effects for /nos, with no interaction, and
no other significant social group treatment or interaction effects for any other genes
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Table 2 Analyzed on a pairwise basis, lab-based social group (mixed, 4U:4D, versus uniform, 8U or 8D) had no effect on gene
expression, despite behavioral differences for disturbed bees as a function of group composition (Fig. 2)

Undisturbed (sample size) Disturbed (sample size) Undisturbed Disturbed
Gene S p
Inos 161 (N=24) 1.27 (N=23) 0.121 0.109
Drat 143 (N=23) 0211 (N=23) 0.166 0417
GB53860 162 (N=24) 154 (N=23) 0.27 0.10
Cyp6g1/2 054 (N=24) —0.080 (N=23) 0.598 0532

P values represent the outcomes of two-tailed tests for undisturbed bees (where there was no difference in behavioral expression as a function of social group
composition) and one-tailed tests for disturbed bees (following predictions based on the finding that individuals displayed higher aggression levels when kept in
uniform groups). Parametric tests were performed for all genes except GB53860, which was analyzed using a Wilcoxon Exact Test. Sample sizes represent the total

number of individuals compared per test

because response to large predators is organized by
positive instead of negative social feedback [44], the
colony mounts a very weak total response. In contrast, in
a negative feedback context, disturbed bees are driven to
exhibit higher levels of aggression when their group
mates are docile. The lab-based assay, which quantifies
response to an intruder bee [37] appears to resemble the
guarding context in terms of both the type of aggression
stimulus and the apparent rules of social regulation.
However, it remains unclear how the target optimum for
group aggression level is set and maintained in the
field or the lab.

Negative social feedback can enable social species to
redirect task effort, e.g.,, in the context of optimal for-
aging [46], but more work is needed to understand how
the feedback threshold, and thus the group level pheno-
typic homeostasis, is set in the context of guarding be-
havior. I found that group aggression effort was
consistent regardless of the sum of individual disturb-
ance histories in a social group. One interpretation of
this finding is that a history of chronic predator disturb-
ance does not readily shift the target optimum for group
guarding effort. This could be because total group
guarding activity is more sensitive to an experience of
intruder threat [45], and not the large predator threats
simulated by the chronic disturbance (though aggression
in these two contexts is correlated to a degree [47]). The
optimal guarding effort at the group level is at least
somewhat genotype-dependent, as is the social respon-
siveness of guard bees [29, 47].

My results suggest that disturbed bees, which generally
show relatively low aggression levels, also show greater
behavioral flexibility in response to social group compos-
ition compared to undisturbed bees. Studies in species
across the sociality spectrum have shown that the degree
of behavioral flexibility exhibited by a particular individual
can vary as a function of personality. Moreover, in some
species, “proactive” individuals, which are often more
aggressive, tend to be less responsive to environmental
variation compared to low aggression “reactive” individ-
uals [20, 48], consistent with the current results. However,

it is difficult to determine whether variation in flexibility is
truly an inherent property of disturbed, low-aggression
individuals, or rather simply a reflection of the pattern of
negative social feedback that regulates guarding behavior
[29]. This type of social feedback may cause the appear-
ance of increased behavioral flexibility for low aggression
individuals who are less responsive to aggression-inducing
social cues and therefore more likely to be socially inhib-
ited during the assay. Very few studies in any species have
determine whether individual variation in behavioral flexi-
bility is generalizable or behavioral context dependent
[19]. In the honey bee however, there are many established
contexts for manipulating the colony environment and
evaluating behavioral response [49-51]. Future behavioral
studies will address whether patterns of behavioral flexibil-
ity are consistent across behavioral contexts or are more
easily explained in terms of positive or negative social
regulatory paradigms.

I evaluated the effects of sequential social experience
on the molecular state of the brain, examining a small
set of genes associated with aggression in previous studies
[25, 28]. If gene expression patterns reflect sequential
social experiences, I predicted a disturbance history by
social group interaction on gene expression levels, but no
such significant interactions were identified. In general
agreement with previous studies, chronic disturbance in-
duced a pattern of brain gene expression consistent with
low aggression, but there was little evidence that short-
term modulation of social context (i.e., in the lab-based
manipulations of small groups) further influenced gene
expression. This result stands in contrast to the observed
social context-dependent shifts in aggressive behavior for
disturbed individuals.

This mismatch between aggression and aggression-
relevant brain gene expression, but only in acute social
contexts, is intriguing. It could reflect the fact that these
selected genes are not causally associated with behavioral
change. However, the fact that they are context-dependent
predictors of aggression suggests there may be more com-
plex processes involved [52]. For instance, it is possible
that these genes are associated with flexibility in aggression
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rather than aggression level per se. However, a previous
study [28] found that these same genes predict high aggres-
sion in older bees that show a relatively high degree of
variation in aggression over time and across individuals
(in contrast to the high aggression undisturbed bees in the
current study). Though many studies associate gene ex-
pression with behavioral variation, the connection be-
tween these two distant phenotypic levels is still poorly
understood. There is ample evidence that an ephemeral or
acute social experience can induce widespread changes in
gene expression [35, 53, 54], but the immediate response
to a social situation is likely mediated by neural elec-
trical signaling [55], perhaps even despite existing differ-
ences at the molecular level. For example, in migratory
locusts, social context instigates a transition from a soli-
tary to a gregarious phenotype associated with swarming
[56]. Gene expression changes accompany this transition,
but the initial shift in behavior that is required to stimulate
changes in other aspects of phenotype (increased or de-
creased association with conspecifics), occurs rapidly and
precedes gene expression changes in some contexts but
not others [57]. Similarly, in an ant, the foraging gene var-
ies as a function of age but is not a direct predictor of for-
aging behavior per se, despite the fact that foraging activity
in general increases with age [58]. Understanding how be-
havior retains flexibility in some contexts in spite of vari-
ation in the molecular or even structural state of the brain
presents a challenging area of future work. This work is
relevant particularly in light of the fact that an increasing
number of studies use gene expression patterns as
markers or predictors of consistent individual differences
in behavior [59, 60].

In the honey bee, variation in aggression tendency
(reflected in gene expression patterns) only becomes
obvious if high levels of inhibitory cues are available to
disturbed individuals in real time during the behavioral
assay. Thus, here I show that a combination of behavioral
and gene expression analyses provides an opportunity to
identify cryptic variation in personality under conditions
in which behavior may appear invariant across individuals.
Conversely, these results also emphasize that the existence
of consistent individual differences in behavior and
behavioral plasticity within individuals are not mutually
exclusive alternatives. Finally, gene expression data
provide a unique tool not only to explore the neural basis
of personality and behavioral flexibility, but also to differ-
entiate transient versus lasting shifts in environmentally
responsive behavioral phenotypes [28, 61], particularly in
circumstances where personality variation and behavioral
flexibility are linked. Here gene expression patterns reflect
the more stable behavioral state that results from chronic
disturbance, but not behavioral outcomes in real-time due
to variation in the relatively short-lived lab based social
group context.
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Conclusions

Taken together, the results presented here show that
individual behavior is a function of behavioral tendency,
social cues experienced in real time, and underlying
rules for social modulation of behavior in response to
group-level effort. The molecular state of the brain can
reveal underlying variation in behavioral tendency and
may predict social response, but it does not always
match behavioral outcome. In a species with highly
socially regulated aggressive behavior, a mechanistic link
between aggressive tendency and response to social
context provides even greater ability for individuals to
fine tune group level behaviors.
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