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Abstract 

Background Understanding predator–prey relationships is fundamental in many areas of ecology and conservation. 
In reptiles, basking time often increases the risk of predation and one way to minimise this risk is to reduce activity 
time and to stay within a refuge. However, this implies costs of lost opportunities for foraging, reproduction, and ther-
moregulation. We aimed to determine the main potential and observed predators of Vipera graeca, to infer predation 
pressure by estimating the incidence and the body length and sex distribution of predation events based on body 
injuries, and to assess whether and how the activity of V. graeca individuals is modified by predation pressure.

Results We observed n = 12 raptor bird species foraging at the study sites, of which Circaetus gallicus, Falco tinnuncu-
lus and Corvus cornix were directly observed as predators of V. graeca. We found injuries and wounds on 12.5% of the 
studied individuals (n = 319). The occurrence of injuries was significantly positively influenced by the body length of 
vipers, and was more frequent on females than on males, while the interaction of length and sex showed a significant 
negative effect. The temporal overlap between predator and viper activity was much greater for the vipers’ potential 
activity than their realised activity. Vipers showed a temporal shift in their bimodal daily activity pattern as they were 
active earlier in the morning and later in the afternoon than could be expected based on the thermal conditions.

Conclusion The time spent being active on the surface has costs to snakes: predation-related injuries increased in 
frequency with length, were more frequent in females than in males and occurred in shorter length for males than 
for females. Our results suggest that vipers do not fully exploit the thermally optimal time window available to them, 
likely because they shift their activity to periods with fewer avian predators.
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Background
Understanding predator–prey relationships is fundamen-
tal in many areas of ecology and conservation. Knowl-
edge of these interactions is essential for mapping trophic 
networks, understanding community organisation and 
structure, demography, behavioural strategies, evolution-
ary processes, for threatened species conservation and 
conservation planning [1–3]. Predation has strong direct 
and indirect effects on prey populations [4–7], and pre-
dation pressure as a selective force has triggered physi-
ological, morphological and behavioural adaptations in 
prey species [8, 9] such as camouflage colouration and 
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morphology, bad taste or poisons, signalling or mim-
icking dangerous model species and many other active 
behaviours facilitating predator avoidance, e.g. escaping 
or counter-attacking [10]. Predator-avoidance behav-
iours have unambiguous short-term benefits in terms 
of survival but the long-term effects on fitness compo-
nents vary. The activity pattern of prey is often influ-
enced by predator activity, which can lead to a trade off 
with other actions in prey species [11]. Reduced activity 
is associated with increased survival in prey species, but 
it also decreases time spent on feeding, foraging success, 
growth rate and/or reproductive success. The reproduc-
tive status of individuals can also influence predation 
risk. For example, in viviparous snakes, mortality can be 
either lower or higher for pregnant females than for other 
individuals, which can lead to biased sex ratio within 
populations [12, 13]. Predation risk also shows temporal 
patterns over daily, lunar and seasonal cycles, depend-
ing on the environment and activity of both predator 
and prey [14]. Further, environmental changes, interrup-
tion of natural processes or arrival of a novel predator 
can lead to population decline of prey, and eventually to 
extinction in extreme cases [15].

The behavioural traits of ectotherms depend on body 
temperature [16], which in turn depends on the available 
environmental temperatures and behavioural choices 
related to thermoregulation. Ectotherms such as rep-
tiles attempt to keep their body temperature in a nar-
row optimal range to optimise physiological processes 
[16–19]. The two main behavioural options to regulate 
body temperature and to keep body temperature within 
the thermal window bounded by thermal tolerance are 
the timing of activity [20] and the choice of microhabitats 
from the thermal landscape [21]. In temperate climates, 
the preferred body temperature can mainly be reached 
by basking, with associated costs of time and energy 
required for thermoregulation and of risks of predation 
[22, 23]. Because basking time increases the chance of 
being noticed by visually searching predators [23], as an 
anti-predator strategy, activity time can be reduced by 
staying within a refuge to minimise the risk of predation, 
however this implies costs of lost opportunities for for-
aging, reproduction, and thermoregulation [7, 24]. Avian 
predators usually have higher success in hunting snakes 
than mammals have, possibly due to better detectability 
by visual searching than by olfactory searching and to the 
poorer escape ability of snakes from predators searching 
for them from a distance [25].

Reptiles are among the most threatened vertebrates 
and are known to decline globally and in Europe [26, 27]. 
The meadow and steppe vipers (Vipera ursinii complex) 
are among the most threatened reptiles: lowland popula-
tions of this complex have lost almost all of their habitats 

due to the transformation of grasslands to croplands 
and have become extinct in a large proportion of their 
former distribution, while alpine populations are threat-
ened by overgrazing and climate change [28]. In addition, 
meadow viper populations with low densities are also 
threatened by high predation pressure [29].

The general aim of this study was to assess predator–
prey relationships involving visually foraging bird species 
as predators and the Greek Meadow Viper Vipera graeca 
[30], a rare, globally endangered, cold-adapted, moun-
tain-dwelling venomous snake as prey. We specifically 
aimed to determine the main potential and observed 
predators of V. graeca, to estimate the incidence and 
the body length and sex distribution of predation events 
based on body injuries to infer predation pressure, and to 
assess whether and how the activity of V. graeca individu-
als is modified by predation pressure. To these ends, we 
surveyed predators in 14 of 17 known populations of V. 
graeca, examined V. graeca individuals for signs of preda-
tion-related injuries, and collected observational data on 
the daily activity of predators in the two largest V. graeca 
populations. We used thermobiological measurements 
(V. graeca preferred body temperature, environmental 
temperature) to estimate the thermal niche and potential 
activity window of V. graeca and compared the potential 
and observed activity of V. graeca and both against pred-
ator activity to study predator avoidance.

Results
We observed 12 raptor bird species in the viper habitats, 
of which Falco tinnunculus, Circaetus gallicus and Buteo 
buteo were the most common. We collected evidence 
on predation on V. graeca by C. gallicus (pellets, n = 5), 
F. tinnunculus (pellets and direct observations of preda-
tion event, n = 4) and Corvus cornix (direct observation, 
n = 1) (Fig. 1). Based on a review of the literature, reptiles 
make up more than 10% of the diet of five raptor species 
that were regularly observed in the study areas (Aquila 
chrysaetos, B. buteo, C. gallicus, F. tinnunculus, Hieraae-
tus pennatus; Table 1).

We examined 319  V. graeca individuals in 14 pop-
ulations (mean ± S.E. 22.8 ± 5.27) for injuries. The 
apparent sex ratio was 0.64:1 males to females for all 
individuals and 0.51:1 for adults. Mean SVL of males 
was 244 ± 4.87  mm and 301 ± 5.11  mm of females. 
Females were significantly larger than males (W = 5341, 
P < 0.0001). We found injuries and wounds on 40 indi-
viduals (12.5%) The majority of these injuries were on the 
middle and the posterior halves of the body, including the 
tail (Fig. 2).

The presence-absence of injuries/wounds on vipers’ 
body were significantly positively influenced by SVL 
(estimate = 6.920 ± 4.967 SE, Z = − 8.403, P < 0.0001) of 
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viper individuals and were more frequent on females 
than on males (estimate = 19.431 ± 2.998 SE, Z = 6.481, 
P < 0.0001). The interaction of SVL and sex showed a 
significant negative effect (estimate = − 3.365 ± 0.533 SE, 
Z = − 6.318, P < 0.0001), as expected, because injuries 
were less frequent in males. Hazard functions showed 
that males obtained injuries at shorter SVL than females 
(Fig. 3).

Observation times of 38 individuals in two populations 
(Tymfi and Lakmos mountains) showed that the diurnal 
activity of V. graeca was bimodal, with one peak in early 
morning and another peak in late afternoon (Fig.  4). 
The comparison of the observed viper activity and the 
potential activity estimated based on environmental 
temperature and thermoregulation showed that the 
observed morning activity peak was earlier than could be 

Fig. 1 Pellets produced by Circaetus gallicus containing remains of Vipera graeca. Freshly killed V. graeca found by accidentally disturbing a feeding 
Falco tinnunculus 

Table 1 Species of birds of prey observed in the habitats of Vipera graeca and portion of reptiles in their diet.

Species preying on V. graeca are highlighted in bold letters

Raptor species Presence at Greek Meadow Viper habitats Reptile % 
of diet

Reference 
for diet

Av Dh Gr Ka Ku La Ll Lu Ne Sh To Tr Ty Va

Accipiter brevipes + + + −
Accipiter gentilis + 0.1% [31]

Accipiter nisus + 0.0%  [32, 33]

Aquila chrysaetos + + + + + + + + 11.1%  [34–40]

Hieraaetus pennatus + + + 12.0% [41–43]

Buteo buteo + + + + + + + + 20.63% [44–52]

Circaetus gallicus + + + + + + + + + + + + 97.5% [53–58]

Corvus cornix + + + + + + − [59]

Falco naumanni + + 0.1% [60]

Falco peregrinus + + 0.12% [61]

Falco subbuteo + 0.0% [33]

Falco tinnunculus + + + + + + + + + + + + + + 22.02% [44–52, 62]
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expected based on the environmental temperature 
and preferred  Tb, and the observed afternoon activity 
peak was later than expected (Fig. 4). The observed and 

potential activity of vipers showed moderate overlap 
(Fig. 4, ΔTymfi = 0.459, ΔLakmos = 0.401).

During data collection on raptor diurnal activity, we 
observed six bird species, F. tinnunculus (53.1% of 98 
observations), C. gallicus (22.4%), B. buteo (18.4%), F. 
peregrinus (3.1%), A. chrysaetos (2.0%), and H. pennatus 
(1.0%). The activity pattern of raptors (data pooled across 
species) was unimodal, with a peak at mid-day (Fig.  4). 
The overlap between the activity of raptors showed signif-
icantly smaller overlap  (WTymfi = 57,662,  PTymfi < 0.0001; 
 WLakmos = 2,  PLakmos < 0.0001) with observed viper activity 
(ΔTymfi = 0.287, ΔLakmos = 0.321) than with potential viper 
activity (ΔTymfi = 0.443, ΔLakmos = 0.835).

Discussion
Our study of predator–prey relationships involving V. 
graeca and its avian predators provided four key results. 
First, we detected a large number of avian predator spe-
cies present in the viper habitats and found evidence 
(pellets, direct observations) of predation on vipers by 
several raptor species. Second, we found a relatively high 
proportion (12.5%) of injured V. graeca individuals, with 
more injuries on the posterior than on the anterior body 

head
anterior 

body mid body
posterior 

body

tail abdomen

Fig. 2 Frequency of predator-caused injuries on the different body parts of Vipera graeca. Photographs in the upper row are examples for these 
injuries
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parts. Third, the incidence of predation-related injuries 
increased with SVL, were more frequent on females than 
on males and they occurred in shorter SVL for males 
than for females. Finally, two results suggested that vipers 
may adjust their diurnal period of activity due to preda-
tion because (i) their daily activity was bimodal, probably 
to avoid the mid-day peak in raptor activity, and (ii) there 
was only moderate overlap with predicted potential activ-
ity because the observed activity of vipers shifted earlier 
in the morning and later in the afternoon than could be 

expected based only on thermal conditions. These dif-
ferences in activity patterns were consistent in two large 
populations on separate mountain ranges.

We directly observed three avian predator species to 
consume vipers (C. cornix, C. gallicus, F. tinnunculus). 
Based on the literature review, this is the first documented 
case of predation by C. cornix on snakes, even though 
this species is a generalist predator that has been  stud-
ied mainly in urban environments [63, 64]. In addition, 
five other reptile-specialist predators were also regularly 
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observed in the viper habitats, and we also obtained evi-
dence on predation on vipers by finding V. graeca remains 
(scales) in faeces of two mammal species (Eurasian Badger 
Meles meles and Red Fox Vulpes vulpes).

With regard to the large number of predators, it is not 
surprising that a relatively large proportion of viper indi-
viduals had injuries, i.e., signs of past failed attempts at 
predation. It is surprising, however, that so many of viper 
individuals were able to survive predator attacks. Most 
of these injuries were on the posterior body parts, which 
likely indicates that the individuals were actively escaping 
from the predators. The shortage of injuries on anterior 
body parts indirectly suggests that predation attempts are 
probably more successful if predators can get a hold of 
the head or the neck of the viper.

We did not find injuries on juvenile vipers and the 
incidence of injuries increased with body length, which 
can can be explained by several, mutually non-exclusive 
mechanisms. Simply, adult snakes had more time to get 
injured than juveniles or juveniles may be easier to catch 
thus they are less likely to survive attacks [65]. The pre-
ferred body temperature of juveniles might be lower than 
that of adults, which can serve as an antipredator adap-
tation [66]. Also, juveniles may spend less time basking, 
again, as an antipredator tactic, trading heat for safety 
[23]. Another alternative explanation is that juvenile 
snakes are too small to be worth hunting by larger rap-
tors, as was found in a study using plasticine models [67]. 
Females were also more likely to get injured and they did 
so at a longer SVL than males. Two explanations for this 
difference can be that (i) gravid females spend more time 
sunbathing than males [68, 69] and (ii) gravid females 
carrying offspring (V. graeca is viviparous) can be slower 
to escape, which may increase their exposure to preda-
tors. Again, an alternative explanation is if males, that are 
usually smaller than females, are more often the victims 
of successful predation attempts, when predators take the 
entire individual.

To avoid predators, animals use different strategies, 
and previous studies have shown that the choice of a 
thermoregulatory period can be part of a predator avoid-
ance strategy in reptiles [70]. Our results suggest that the 
daily activity peaks of vipers are shifted towards ther-
mobiologically suboptimal periods to minimise overlap 
with the activity peak of predators, which can be a preda-
tor avoidance strategy. In the summer, V. graeca usually 
bask for approximately 1–2 h after sunrise, which is the 
best time period to find individuals compared to other 
times of the day. Thermal updrafts arrive from the valleys 
2–3  h after sunrise, which soaring birds of prey exploit 
to fly up to viper habitats on the mountain. The overlap 
between the sunbathing period and the appearance of 
thermal updrafts offers the best chances of preying on 

vipers for predators because V. graeca individuals tend to 
retreat to their burrows later due to increasing soil and 
air temperature and/or the appearance of predators. In 
the late afternoon, when the air cools back, vipers have a 
second, smaller peak of activity just before sunset, when 
a smaller number of individuals come out of their bur-
rows for sunbathing and/or feeding than in the morning. 
While the activity peaks of both vipers and predators can 
be explained by large-scale patterns in daily temperature, 
it is important to emphasize that even though periods 
later in the morning and earlier in the afternoon would 
similarly be thermobiologically suitable for V. graeca 
for sunbathing, the activity peaks are shifted earlier in 
the morning and later in the afternoon that could be 
expected based on temperature changes alone. These pat-
terns indicate that predator avoidance can play a role in 
the bimodal nature of diurnal activity and the shifting of 
the activity peaks and that V. graeca does not exploit the 
whole extent of the thermally available activity window, 
likely due to risks of predation.

Our study offers several novelties in understanding 
predator–prey relationships involving snakes as prey. 
This study presents a detailed survey of potential and 
actual predators of a viper species in open mountain 
grassland ecosystems based on a large dataset from 14 
of 17 known populations of V. graeca, covering much of 
the geographic range of the species. Our most important 
findings, i.e., the bimodal activity pattern of vipers and 
the shift in observed activity from the thermobiologically 
most suitable period to suboptimal periods, are both 
likely to be influenced by the activity of predators, have 
not been demonstrated in snakes before.

However, most importantly, our data on injuries may 
not be complete to assess predation pressure or the full 
spectrum of predation patterns because we have no 
information on individuals that perished in successful 
predation attempts. For example, if most of the preda-
tion attempts on juveniles or smaller males were suc-
cessful, it may lead to the observed overrepresentation 
of predation-related injuries on females, whereas in 
reality, females may be better at escaping from preda-
tors. Overall predation pressure is probably greatly 
underestimated by the injury-based method and many 
of the detected differences can be explained in either 
of two ways, as elaborated above, because we do not 
know anything about individuals suffering success-
ful predation attempts. More detailed observation of 
predators and, if possible, predation events or evidence 
from predation events such as scales in pellets or fae-
ces are necessary to assess predation pressure and its 
population-level consequences. Experimental studies 
using clay or plasticine models would further inform us 
about the relative importance of avian vs. mammalian 
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predation, the spatial and temporal patterns of preda-
tion attempts and so on, which would provide a more 
accurate assessment of predator activity and predation 
pressure. Similarly, an experimental study based on the 
observations or measurements of viper behaviour upon 
the presentation of a predator decoy would throw more 
light on whether the activity shift occurs due to behav-
ioural responses triggered by perceived predation risk 
or to daily temperature changes.

Conclusions
We detected a large number of avian predators pre-
sent in the habitats of the endangered Greek meadow 
viper (Vipera graeca) and found evidence (pellets, 
direct observations) of predation on vipers by three of 
these species. The relatively high proportion (12.5%) 
of injured V. graeca individuals observed suggests 
high predation pressure. The frequency of injuries was 
higher on the mid and posterior body part compared 
to the head and anterior body parts, likely caused by 
higher foraging success of predators when they target 
the head of snakes. Our data suggests that the time 
spent being active on the surface (thermoregulation 
and foraging) by the snakes has costs: predation-related 
injuries increased with body length, were more frequent 
in females than in males and occurred at shorter SVL 
for males than for females. The high overlap between 
viper potential activity and predator activity in contrast 
to the moderate overlap between observed activity and 
predator activity suggests that there is a trade-off in the 
time budget of the studied viper species as individuals 
adjust their diurnal activity period to predator activity. 
The vipers show a shift in their daily bimodal activity 
by being active earlier in the morning and later in the 
afternoon than could be expected based on the thermal 
conditions only. This finding suggests that vipers do not 
fully exploit the thermally optimal time window (ther-
mal niche) available to reach their preferred body tem-
perature in a cold environment.

Methods
Study species
The prey species in this study is Vipera graeca, which 
is among the least known endangered snake species in 
Europe [71]. The 17 known populations of V. graeca are 
found in subalpine meadows above the tree line, between 
1,600–2,200  m above sea level in isolated ranges of the 
Pindos Mountains in southern Albania and central 
Greece [72]. V. graeca is the smallest viper of Europe, the 
body length of adult individuals averages 35–40 cm, with 
a maximum of 45  cm, and females are larger than than 
males. These grassland snakes are dietary specialists on 

locusts and bush-crickets [73]. Due to climate change 
and unsustainable land use, approximately 90% of the 
current habitats are likely to become unsuitable by the 
2080s, thus conservation actions need to be implemented 
urgently to avoid extinction [72].

Data collection
We collected data in 14 of the 17 known populations of V. 
graeca. Exact locations are not given due to conservation 
reasons but are available from the corresponding author 
upon reasonable request. In each population, we inten-
sively searched for snakes during the vipers’ active season 
between April and September in 2010–2019. We care-
fully checked the captured individuals for wounds and 
injuries that potentially originated from attacks of preda-
tors and recorded both the sex and the snout-vent length 
(SVL). After data collection, all individuals were released 
at the exact location of capture.

To assess the daily activity of vipers, we collected data 
on the thermoregulation and the thermal environment 
in two of the largest populations, on Tymfi and Lakmos 
mountains in Greece in July and August of 2017. We 
chose these summer months because the species is most 
active and easiest to capture in this period based on our 
previous experience. To capture snakes, we searched 
characteristic V. graeca habitats throughout the day as 
described in Mizsei et  al. [71]. We then measured the 
selected body temperature  (Tb) of captured snakes in 
100 × 30 × 30-cm terraria in which we established a ther-
mal gradient ranging from 20 to 40 °C and measured  Tb 
hourly by a Testo 826-T4 thermocouple inserted in the 
snakes’ cloaca. We collected environmental temperature 
data called operative temperature  (To), the temperature 
that a non-thermoregulating animal could attain based 
on heat radiation, conduction, and convection. We meas-
ured  To by using a physical model made of copper that 
mimicked the size, shape, and heat absorption of the 
study species. To measure  To, we equipped the models 
with temperature data loggers (Thermochron iButton 
DS1921G-F5#) pre-set to record data in 5-min intervals 
and placed the models in four different micro-environ-
ments: in burrows, under rocks, in shade of vegetation, 
and on soil exposed to sun. The models were placed in 
the micro-environments closest to the exact location of 
capture of V. graeca individuals.

During snake searches, we also surveyed avian preda-
tors in the snake habitats to assemble checklists of avian 
predators observed in each studied population. During 
fieldwork to capture viper individuals, we also collected 
scat samples of mesopredator mammals and pellets from 
birds of prey, in all of the studied viper populations. To 
collect pellets of birds, we checked the rocks used as 
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look-out points or resting spots if there were accessible 
by foot. In addition, we reviewed the literature on the 
dietary preferences of the observed predator species. 
To obtain detailed data on the daily activity of preda-
tors, we recorded bird activity in both the Tymfi and 
Lakmos mountains during the peak activity of vipers for 
10–10 days in July and August of 2017. To record preda-
tor activity, two observers watched for potential preda-
tor birds from a mountain peak in each studied location, 
which enabled us to simultaneously monitor approxi-
mately 100 ha area of viper habitat.

Data analysis
To assess the age and sex distribution of injuries, we used 
SVL as a proxy for the age of individuals. We fitted nega-
tive binomial generalized linear mixed models (glmm) 
to analyse the effect of SVL and sex on the presence of 
injuries using the ‘lme4’ package of R [74]. The binary 
dependent variable was the presence-absence of injuries, 
while the explanatory variables were the sex and SVL of 
the individuals. We controlled for potential spatial bias 
by including population identity as a random factor. We 
used hazard functions to compare the probability of get-
ting injured for male and female vipers with smoothing 
spline functions of the ‘gss’ package of R [75].

We estimated activity patterns by probability density 
functions (PDF) by kernel density estimation or by fitting 
parametric trigonometric sum distributions of obser-
vation time, which was regarded as a circular random 
variable where the underlying density was expected to 
be bimodal. We created three sets of PDFs for the Tymfi 
and Lakmos study sites separately: (1) the daily activity 
of raptors based on observation times, pooled across 
the species known to be preying on V. graeca; (2) the 
observed daily activity of V. graeca based on observation 
times; (3) the potential daily activity of V. graeca based 
on thermoregulation measurements. To predict the 
potential activity of V. graeca, we first fitted a function 
to the frequency of  Tb values selected in the thermal gra-
dient by viper individuals using the ‘rpearson’ function 
of the ‘PearsonDS’ package [76], based on the variance, 
skewness and kurtosis of data, which were estimated by 
the ‘descdist’ function of the ‘fitdistrplus’ package [77]. 
We scaled the estimates of the fitted distribution to range 
between 0–1 and regarded this as activity probability. 
Second, we calculated the average  To for each 5-min 
interval, and joined these data with the activity probabil-
ity values. To obtain time data representing the potential 
activity of V. graeca, we randomly resampled the time of 
mean  To by regarding activity probability as a probabil-
ity weight by the ‘sample’ base function of R. We meas-
ured the overlap of two activity patterns by calculating 
the coefficient of overlapping (Δ) using the ‘overlapEst’ 

function of the ‘overlap’ package [78], which is the area 
under the curve that is formed by taking the minimum 
of the two density functions at each time point. Δ can 
range between 0 (no overlap) and 1 (complete overlap), 
and is interpreted as the proportion of activity that dif-
fers between the two activity patterns by less than 1-Δ 
in any time period. We calculated the 95 percent confi-
dence intervals for Δ as percentile intervals from 1000 
bootstrap samples. All data processing and analyses were 
implemented in the R 4.0.2 statistical environment [79].
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