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Abstract

Background: There is a long-standing controversial about how parthenogenetic species can be defined in
absence of a generally accepted species concept for this reproductive mode. An integrative approach was
suggested, combining molecular and morphological data to identify distinct monophyletic entities. Using this
approach, speciation of parthenogenetic lineages was recently demonstrated for groups of bdelloid rotifers and
oribatid mites. Trhypochthonius tectorum, an oribatid mite from the entirely parthenogenetic desmonomatan family
Trhypochthoniidae, is traditionally treated as a single species in Central Europe. However, two new morphological
lineages were recently proposed for some Austrian populations of T. tectorum, and were described as novel
subspecies (7. silvestris europaeus) or form (T. japonicus forma occidentalis). We used the morphological and
morphometrical data which led to this separation, and added mitochondrial and nuclear DNA sequences and the
chemical composition of complex exocrine oil gland secretions to test this taxonomical hypothesis. This is the first
attempt to combine these three types of data for integrative taxonomical investigations of oribatid mites.

Results: We show that the previous European species T. tectorum represents a species complex consisting of three
distinct lineages in Austria (T.tectorum, T. silvestris europaeus and T. japonicus forma occidentalis), each clearly
separated by morphology, oil gland secretion profiles and mitochondrial cox! sequences. This diversification
happened in the last ten million years. In contrast to these results, no variation among the lineages was found in
the nuclear 18S rDNA.

Conclusions: Our approach combined morphological, molecular and chemical data to investigate diversity and
species delineation in a parthenogenetic oribatid mite species complex. To date, hypotheses of a general oribatid
mite phylogeny are manifold, and mostly based on single-method approaches. Probably, the integrative approach
proposed here can be used to uncover further hidden biodiversity of glandulate Oribatida and help to build up
more stable phylogenetic hypotheses in the future.

Background

More than twenty hypotheses try to explain the advan-
tages of sexual reproduction over parthenogenesis or
asexuality [1,2]. Most of these theories tolerate the exis-
tence of parthenogenetic species in the short-term, but
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predict that there should be no radiation and long-term
survival of groups lacking sexual reproduction. About
2,000 parthenogenetic species have been described
among almost all groups of animals [3]. However, exis-
tence and recognition of parthenogenetic species
remains a controversial topic, mostly due to the fact
that the traditional biological species concept is axioma-
tically related to sexuality. Additionally, misunderstand-
ings of parthenogenetic population genetics have led to

© 2011 Heethoff et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:heethoff@gmx.de
mailto:guenther.raspotnig@uni-graz.at
http://creativecommons.org/licenses/by/2.0

Heethoff et al. Frontiers in Zoology 2011, 8:2
http://www frontiersinzoology.com/content/8/1/2

the prediction that parthenogenetic organisms must
form a continuum of genetic variation [4]. But this is not
necessarily true - parthenogenetic lineages can split into
independently evolving entities, thus speciation of parthe-
nogens can be addressed empirically [5]. Recently, specia-
tion of ancient parthenogenetic lineages has been
demonstrated for bdelloid rotifers [4,6-8] and several
groups of oribatid mites [9-13]. High and consistent clonal
diversity was also demonstrated for the putative ancient
parthenogenetic Darwinula stevensoni (Ostracoda) [14],
contrasting the low diversity shown earlier [15].

The existence of parthenogenetic species has been
proposed in different species concepts, including the
evolutionary, ecological and phylogenetic species con-
cepts [16-18], but it remains a major concern how a
parthenogenetic species can be defined in a biological
meaningful context. Recently, a new evolutionary genetic
species concept, based on population genetic theory and
DNA sequence data, has been proposed and applied to
delineate parthenogenetic species of bdelloid rotifers
and oribatid mites [19,20]. Another DNA-sequence
based approach, genetic barcoding, uses a part of the
mitochondrial cytochrome oxidase 1 (coxI) gene to dif-
ferentiate between species on the basis of genetic dis-
tances and was proposed to be useful for the
identification of undescribed species [21-23]. However,
this pure molecular-based barcoding was criticized
[24-27] to be a phenetic, non-cladistic approach and no
general definition is available for the amount of genetic
distance indicating a separation of lineages into species.
Hence, an integrative approach was suggested, combin-
ing data from multiple sources for the identification and
definition of new species [28-31] and such integrative
approaches using molecular and morphological data
were successfully used for the identification of indepen-
dently evolving lineages within parthenogenetic clusters
of bdelloid rotifers [6] and the parthenogenetic oribatid
mite genus Tectocepheus [13]. However, it was suggested
that at least three different sources of data should be
included for a reliable delimitation of species boundaries
[30,31]. Besides morphological and molecular data, we
included the chemical composition of oil gland secre-
tions to investigate characteristics of Austrian popula-
tions of the oribatid mite Trhypochthonius tectorum.

Oil glands are paired opisthosomal sac-like exocrine
glands characteristic of the so-called ‘glandulate Oriba-
tida’ [32] and may contain complex mixtures of ter-
penes, aromatics, hydrocarbons [33] and alkaloids [34].
The chemical composition of oil gland secretions was
shown to be a phylogenetically informative set of char-
acters [35], allowing also differentiation between popula-
tions of parthenogenetic oribatid mite species [33].

Oribatid mites are a speciose group of chelicerates
(~10.000 species, [36]) with Devonian [37], Silurian [38]
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or Precambrian [39] origin. Parthenogenesis is wide-
spread among the Oribatida and several large monophy-
letic and parthenogenetic groups exist, consisting of 50
to 180 morphologically described species [10,12]. One of
these exclusively parthenogenetic families, the Trhy-
pochthoniidae [40], comprises 51 species [41] with
about 25 species in the genus Trhypochthonius [42].
Parthenogenetic reproduction of Trhypochthoniidae was
first assumed by Grandjean in 1941, based on the rarity
of males [43], and later experimentally proven for
numerous species of this family [44-46]. Trhypochtho-
nius tectorum [47] was reported from Holarctic, Oriental
and Neotropic regions and a number of subspecies have
been described using morphology only [41], although
their identity is questionable [40]. Previously assumed as
a single species, Trhypochthonius tectorum was recently
hypothesized to be a species complex rather than a sin-
gle species in Austria, and a new subspecies (7. silvestris
europaeus) as well as a new form (7. japonicus forma
occidentalis) have been differentiated from T. tectorum
s. str. using morphological data [48]. Here, we expand
this morphological analysis of Austrian populations by
including molecular and chemical data to test the
hypothesis of independent entities using an integrative
approach.

We show that the three lineages proposed by [48] are
independent entities, clearly separated by morphology,
gland secretions and mitochondrial sequences and that
completely homogeneous nuclear ribosomal DNA con-
trasts this separation.

Results

Chemical analyses

Analyses of oil gland secretion profiles led to three dis-
tinct chemical profiles (Figure 1, Table 1). One of the
gas chromatographic profiles was identical to published
data of T. tectorum [49] hence the lineage showing this
profile was denoted as T. tectorum (TT) for morphome-
trical and molecular analyses. The chemical profile of
TT consisted of eleven compounds with characteristic
relative abundance (Table 1). The compounds were
2-hydroxy-6-methylbenzaldehyde (= 2,6-HMBD; peak 1),
neral (peak 2), geranial (peak 3), 2-formyl-3-hydroxy
benzaldehyde (= 2,3-FHBD, = y-acaridial; peak 5), penta-
decane (peak 7), 6,9-heptadecadiene (peak 9, identified
by DMDS-derivatives), heptadecene (peak 10, double
bond position not identified, probably 4-heptadecane),
(Z,E)-farnesal (peak 11), (E,E)-farnesal (peak 12) and
two unknown components (peaks 6, 8). The described
profile was consistently found in all extracts of TT from
any location (CF, SG and SB; see Methods for locations).
In contrast to this already well-known profile of
T. tectorum, the profiles of T. silvestris europaeus
(denoted as TA) and T. japonicus forma occidentalis
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Figure 1 Chemical profiles. Chromatographic profiles of extracts from TT, TA and TB.
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Table 1 Oil gland secretion profiles

T TA TB AL
2,6-HMBD 284 = 5.9 0 0 44 +19
Neral 08+ 03 214 £ 3.1 0 16.1 = 2.7
Geranial 09 +£05 18 £ 06 0 06 £02
Neryl formate 0 15+12 0 348 + 4.4
y-Acaridial 128 £3.1 292 +83 155+44 255+49
Unknown_1 36+ 12 87+ 26 31 +21 0
Pentadecene 0 0 0 2+06
Pentadecane 14 + 04 13+03 12+03 104 = 2.3
Unknown_2 44+ 16 34+£15 6.6 £ 49 0
Heptadecadiene 21.6+50 142 +27 125+22 04+02
Heptadecene 47 £ 16 22+ 05 4.7 £ 06 57 +24
Heptadecane 0 0 0 0.1£0.1
ZE-Farmnesal 194 +41 140+£52 45675 0
EE-Farnesal 20+£10 23+12 106 + 3.4 0

Composition of oil gland secretions (TT, n = 14; TA, n = 13; TB, n = 4),
Archegozetes longisetosus (AL, n = 33, see also [51]); values represent % of
whole secretion (average + SD); main components (>10%) in bold.

(denoted as TB) were considerably different. The TA
profile from collection site CW (see Methods for loca-
tion), lacked 2,6-HMBD, but in addition showed small
amounts of neryl formate (Figure 1, peak 4). TB was
syntopically found at sample site CW and the chemical
profile lacked 2,6-HMBD, neral, geranial and neryl for-
mate. Hence, the TB-profile consisted of eight com-
pounds only (Figure 1). An outgroup comparison was
done with Archegozetes longisetosus, confirming the
already published ten compounds-profile of 2,6-HMBD,
neral, geranial, neryl formate, y-acaridial, pentadecene,
n-pentadecane, heptadecadiene, heptadecene and,
although only in trace quantities, heptadecane [50,51].

Apart from easily visible qualitative differences, all
profiles were quantified (leading to characteristic
patterns of relative abundance of components in each
profile (Table 1), and were subsequently subjected to
multivariate statistics, forming consistent and significant
clusters that do not overlap (Figure 2).
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Figure 2 Canonical discriminant analysis of oil gland secretions.
Estimation of the validity of the discriminant function is based on
the significance of Wilk's Lambda and the percentage of correct
assignment. Four chemical groups were verified, clearly indicating
that TT, TA, TB and AL are chemically completely separated (100%
of cases were correctly assigned to the four previously defined
taxa).

Morphometrical analyses

Details of morphometrical measurements are given in
[48]. Here, we only shortly summarize the main results
that we used within this integrative framework. TT, TA
and TB differed significantly in body length. With a
mean body length of 643 um, TT was larger than TA
(mean: 597 pum), but smaller than TB (mean: 717 um).
Besides this, TT, TA and TB could be separated by
their different numbers of genital setae and their relative
length of the notogastral setae c,, d;, d3 e; and p3
(exemplified for ¢, in Figure 3). In addition, distance-
based cluster analyses of the setae types show a clear
separation of the three groups with a higher similarity
of TT and TA than any of these has to TB (Figure 4).

Molecular analyses

A 600 bp fragment of the cox! gene was obtained from
each three specimens of TT, TA and TB and the out-
group AL and aligned by hand without any ambiguity or
gaps. No variation was found within the replicates of
TT, TA, TB and AL. In total, 181 (30.2%) nucleotide
positions were variable and informative. Excluding the
outgroup, 127 bp (21.2%) were variable and informative
among the three Trhypochthonius groups TT, TA and
TB. TT was characterized by eleven apomorphic nucleo-
tide positions, TA showed two apomorphies, and for TB
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there were 73 apomorphic characters. TT and TA
showed 82 synapomorphies, contradicted by three posi-
tions shared by TA and TB. Not a single synapomorphy
was found for TT and TB. Maximum Parsimony ana-
lyses in PAUP* resulted in a single tree with a tree-
length of 218 and consistency index (CI) and rescaled
consistency index (RC) of 0.99 each (Figure 5). The
identical topology was found with Maximum Likelihood
analyses.

Relative rate tests using AL as outgroup and all com-
binations of TT, TA and TB as ingroup taxa resulted in
no significant rate variations (x*(1) < 3.6, p > 0.05). In
addition, a likelihood ratio test, based on the likelihoods
of the corresponding branch-and-bound trees, was per-
formed with the molecular clock enforced and not
enforced (enforced: -In L = 1679.427; not enforced: -In
L = 1674.96; x*(10) = 0.104, p > 0.99) and showed also
no rate variation. Therefore, the assumption of a mole-
cular clock seems appropriate. A molecular divergence
rate of 2.15% per million years was estimated for the
coxI gene of oribatid mites [12,52]. Genetic pairwise p-
distances were corrected by an evolutionary model
(HKY, [53]; estimated by hLRTs, AIC and BIC in Mod-
eltest 3.7, [54]) with nucleotide composition A: 0.2531,
C: 0.2198, G: 0.19, T: 0.3371 and k: 1.5108 (Table 2).
Evolutionary ages of the lineages were estimated based
on the corrected distances: TT and TA separated about
one million years ago and the last common ancestor of
TB and TT/TA lived about eleven million years ago
(Figure 5).

The alignment of the nuclear 18S rDNA consisted of
1700 nucleotides. All Trhypochthonius-sequences were
identical, and all were identical to a published sequence
of T. americanus (EF081298, [11]). Hence, no further
phylogenetic analyses of these sequences were
performed.

Discussion

What is a parthenogenetic species? We do not aim to
give an exhaustive discussion on this difficult topic, but
we want to shade light on some practical implications,
i.e. methods to detect separated genotypic and phenoty-
pic entities (whether they will be denoted as species or
not). It is clear that reproductive isolation, the basis of
the biological species concept [55], is meaningless for
the definition of parthenogenetic species. Almost all
parthenogens are described on their morphology only
(morphospecies), applying at best the same subjective
criteria for discriminating species as taxonomists do
with sexual species. The occurrence of phenotypic plas-
ticity or the absence of phenotypic variation despite gen-
otypic variability (‘cryptic species’, see [12]) can be
observed in many groups irrespective their mode of
reproduction. Therefore, both may be analyzed with the
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Figure 3 Lengths of setae. Ranges of length-values of notogaster setae ¢, (left) and individual length-values plotted against notogaster lengths
(right) of populations TT, TA and TB from Austria.

same procedures. However, the delineation of species
and their subsequent classification into larger taxonomic
units may be somehow problematic, especially when
dealing with character-poor organisms of small size and
similar morphology. Many soil-dwelling arthropods
belong to this group, such as some highly-conservative
opilionids of different suborders [56,57], but also many
Oribatida. In these groups numerous so-called ‘species-
complexes’ exist, i.e. assemblages of similar species or
sub-species that are not clearly delineated from each
other. Such ‘species’ may either show a high intraspecific
variability of characters or may actually represent groups
of closely related, cryptic (or nearly cryptic) species. In

B

TA

1T

0 5 10 15 20 25
distances

Figure 4 Morphometric similarities. Tree cluster on the similarities
among TT, TA and TB. Distances calculated from summed
differences of notogastral setae types (see [48]).

many cases, one set of characters alone - e.g. traditional
characters from external morphology - fails to answer
questions on this low taxonomic level. Hence, numerous
approaches towards integrative taxonomy have been
attempted in the last years: using a combination of
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Figure 5 Phylogenetic analysis. Maximum parsimony cladogram of

TT, TA, TB with the outgroup AL. Tree length: 218, Cl: 0.9954, RC:

0.9937. Numbers on branches are bootstrap values (1,000 replicates).

Numbers below branches indicate the estimated age of the split (myr).
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Table 2 Genetic distances

Split p-distance HKY distance Age of split [myr]
AL-TT 023167 0.28009 13

AL - TA 0.22167 0.26438 12

AL - TB 0.21667 025776 12

TT-TA 0.02167 0.022 1

TT-T8B 021 0.2498 12

TA -TB 0.195 0.22863 11

Genetic pairwise p-distances and corrected distances (HKY) with estimated
ages of lineages (based on corrected distances).

methods, a more rigorous concept of the delimitation of
problematic species has been introduced [30,31]. Many
examples of the successful application of combined
methods meanwhile exist, and with respect to the Opi-
liones mentioned above, a large number of new but so
far cryptic opilionid Cyphophthalmus-species on the Bal-
kan Peninsula have been discovered using morphological
and molecular characters [57,58]. By contrast, the sys-
tematics of Oribatida suffers greatly from still uni-metho-
dological approaches: i) the majority of taxonomic studies
in the Oribatida is still exclusively based on traditional
sets of data derived from external morphology; and
ii) novel methods, such as molecular phylogenetic
approaches, are rarely combined with morphological
data. Molecular data for the delineation of the partheno-
genetic oribatid mite genus Tectocepheus were presented
[13] and combined with morphological data from [59] to
demonstrate parthenogenetic radiation - a rare example
of an integrative approach in oribatid mite systematics.

Each uni-methodological approach, including molecu-
lar techniques, is assumed to have an inherent failure
rate in the delimination of species [31]. With respect to
taxonomic studies in arthropods, and according to [31],
the failure rate is 28% when using nuclear DNA-data
alone, and 33% when using mitochondrial DNA. Failure
rates arising from studies using morphological or chemi-
cal data alone show similar failure rates of 23% and 22%,
respectively. Combining any two of these methods leads
to a reduced failure rate of 9%, but only when three are
combined, a statistically acceptable failure rate below 5%
can be achieved [31].

Chemical data

With respect to glandulate Oribatida and their multi-
component secretions from the oil glands, an indepen-
dent pool of characters has been made available to
oribatid systematics and phylogeny in the last years
[33,35]. One model group for such studies is the Trhy-
pochthoniidae, medium to large oribatids that i) possess
largely developed oil glands, making it possible to
analyze individual extracts in some species, ii) show spe-
cific combinations of chemically already characterized
compounds (so-called ‘Astigmata compounds’ sensu
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[60]), and iii) generally exhibit information-rich multi-
component secretion profiles. In addition, a considerable
data base on their secretions has been generated, repre-
senting an important source for reference: in detail,
secretion profiles of Archegozetes longisetosus [50,51],
Trhypochthoniellus crassus and three species of
Trhypochthonius (T. tectorum, T. japonicus and a not
determined Japanese Trhypochthonius species) have
already been analyzed, each showing species-specific and
interspecifically distinctive secretion profiles [49,61,62].
Considering these data, the profile of TT appears to be
rather basal within Trhypochthoniidae, showing the full
spectrum of ‘Astigmata compounds’ except for neryl for-
mate. The lack of 2,6-HMBD in TA and TB, however,
may be due to convergent reduction, especially when
regarding the clear phylogenetic relatedness of TT and
TA implied by molecular data.

Morphological data

In a morphometrical analysis that was the initiation of
this integrative project (details in [48]) the three distinct
European lineages within Trhypochthonius tectorum s.
lat. (TT, TA, TB) were compared with T. japonicus [63]
from Japan, T. americanus [64] and T. silvestris [65],
both from North America. TA looked quite similar to
T. silvestris, but was statistically distinct, and hence was
proposed as subspecies T. silvestris europaeus [48]. TB
was very similar to T. japonicus, the difference in
morphometric respect was small, but partly significant,
and thus TB was classified as geographically distinct
T. japonicus forma occidentalis [48]. This close relation-
ship is also supported by oil gland chemistry showing
nearly identical secretion profiles of TB and T. japonicus
[62]. Since there is a graduated degree of similarities
with respect to the morphological characters within
the lineages, these were expressed taxonomically as
form or subspecies [48]. Morphologically, species of
Trhypochthonius show several evolutionary lineages, one
of these is the T. tectorum species complex [48], which -
apart from T. tectorum - contains several other repre-
sentatives from, e.g., North America and Japan.

Molecular data

Phylogenetic analyses using the maximum parsimony
criterion are prone to the phenomenon of long-branch
attraction, especially when molecular data are used and
divergences between sequences are high [66]. Hence, if
long branches occur in the data, an alternative method,
such as maximum likelihood, is desired. However, if no
long branches exist in the data, the data-set is small
enough (less than 25 taxa) to be analyzed exhaustively
(i.e. with a guarantee to find the shortest tree), only a
single shortest tree is to be found, and the distribution
of characters is highly congruent on this shortest tree,
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then we see no good reason to use other methods than
maximum parsimony (however, we performed also max-
imum likelihood analyses with identical results). In this
study, the 600 bp coxI-alignment of the Trhypochtho-
nius-species showed 127 variable and phylogenetically
informative nucleotide positions (21.2%). There were
clear apomorphies for each of the three lineages, and a
high number (82) of synapomorphies for the sister-taxa
TT and TA, contradicted by only three nucleotide
positions supporting TA+TB. This results in a high con-
sistency (and rescaled consistency) index of 0.99, very
close to complete congruence (Figure 5). However, the
bootstrap-support for the monophyly of TA is only 78,
which can be explained by the low (but consistent)
number of only two apomorphies that define this taxon.
There is not a single position that supports any other
hypotheses than the monophyly of TA, but the two
apomorphies simply get lost by chance in 22% of the
bootstrap resampling procedure. Hence, we think that
the high amount of informative positions and the high
consistency index clearly support the topology given in
Figure 5.

In contrast to the high divergence and information of
the coxI-sequences, the 1,700 bp alignment of the
nuclear ribosomal 18S sequences showed no variation at
all. We included a published sequence of T. americanus
(EF081298) in the alignment, and this sequence also was
identical. This phenomenon is not unique among mites -
Navajas et al. [67] reported 5% of divergence in the
mitochondrial COI sequences and no variability in the
ribosomal nuclear ITS2 sequences in the spider mite
Tetranychus urticae. This was explained by a high
colonization potential of this species, preventing long-
term differentiation. However, T. urticae is a sexually
reproducing, thus recombining pest-species, and
T. tectorum is a parthenogenetic species belonging to the
Desmonomata, hence presumably has an inverted meio-
tic sequence and no meiotic recombination [68-71].
Another ancient parthenogenetic species, Darwinula ste-
vensoni (Ostracoda) also showed this same pattern:
homogenized nuclear ribosomal sequences in contrast to
divergent mitochondrial COI sequences [15]. Here, this
pattern was explained by a reduced mutation rate and
effective machinery for DNA repair. We do not exactly
know ultimate causes for the contrasting nuclear and
mitochondrial divergence in T. tectorum, but we think
that besides a lower mutation rate of the nuclear genome
this could be a result of the special reproductive mechan-
ism: automixis with inverted meiosis and terminal
fusion [70].

The Trhypochthonius tectorum complex was hitherto
conceived as a single species in Europe. Our integrative
approach shows consistently that i) the recently
proposed T. silvestris europaeus and T. japonicus
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forma occidentalis are distinct taxonomical entities, ii)
T. tectorum and T. silvestris europaeus are related taxa
which separated about one million years ago, iii)
T. japonicus forma occidentalis separated from T. tec-
torum and T. silvestris europaeus11-12 million years ago.

Conclusions

We showed that an integrative approach, combining
morphometrical, chemical, and molecular data, could be
used to identify distinct lineages within a parthenoge-
netic oribatid mite species complex. A combination of
these three methods might also help in unraveling at
least some of the numerous controversies in glandulate
oribatid mite phylogeny.

The two new lineages T. silvestris europaeus and
T. japonicus forma occidentalis were found by taking
only a few, random samples in Austria. Hence, we
assume that a more thorough sampling all over the
Holarctic range of distribution will probably uncover
numerous additional lineages within the T. tectorum
complex. Thus, unless this complex is investigated in
more detail, and to avoid further confusion, the recently
proposed taxonomical rank of T. silvestris europaeus
(subspecies) and T. japonicus forma occidentalis (form)
is presently left unchanged.

A future agreement for the definition of parthenoge-
netic species in an integrative context seems desirable,
especially since more and more different sources of data
(morphological, molecular, chemical, biochemical,
physiological, ecological, behavioural) are included in
integrative approaches.

Methods

Specimens

Four sites in Austria were sampled; specimens of 7. tec-
torum were collected by hand and kept alive for indivi-
dual extraction and chemical analyses of oil gland
secretion profiles. Subsequently, specimens were sorted
with respect to their secretion profiles and size, stored
in ethanol and analyzed morphometrically and geneti-
cally. Sample sites were: (1) Carinthia, Ferlach, moss on
a roof (= CF); (2) Carinthia, Waidischbach, moss and lit-
ter in a Pinus stand (= CW); (3) Styria, Graz, moss on a
street pavement (= SG); (4) Styria, Bachsdorf, moss on a
roof (= SB).

The laboratory lineage A. longisetosus ran (= AL, [72]),
also a member of the parthenogenetic Trhypochthonii-
dae, originated from our laboratory culture and was
used as outgroup for phylogenetic analyses of molecular
data and for comparisons of oil gland chemistry.

Chemical analyses
Specimens were handled with care to avoid release of
their oil gland secretions prior to extraction. Extracts
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were prepared by submersing living individuals in 50 pl
of hexane for 30 minutes for a discharge of secretions
into the solvent [73]. Crude extracts were used for che-
mical analyses using a Trace gas chromatograph (GC)
coupled to a Voyager mass spectrometer (MS) (both
from Thermo, Vienna, Austria). The GC-column (ZB-
5MS fused silica capillary column: 30 m x 0.25 mm i.d.,
0.25 pm film thickness; Phenomenex, Aschaffenburg,
Germany) was directly connected to the ion source of
the MS. The splitless Grob injector was kept at 260°C,
and helium was used as a carrier gas with a constant
flow rate of 1.5 ml/min. The temperature program was
set to 50°C (1 min), followed by an increase of 10°C/min
until 200°C were reached, then 15°C/min until 300°C
were reached with a final isothermal hold (300°C) for 5
minutes. The ion source of the MS was kept at 150°C
and the transfer line at 310°C. Electron impact spectra
were recorded at 70 eV.

Where possible, compounds were identified on the
basis of mass spectral data and comparison of retention
times to authentic standards or tentatively, by interpre-
tation and comparison of mass spectra to reference
spectra from literature and the NIST-library [73].

Secretion profiles were evaluated by integration of
peak areas in the chromatograms and by calculation of
the relative abundance of peaks (given in % of peak area
of the whole secretion). Secretion profiles, including
qualitative and quantitative information, were further
subjected to discriminant analyses (using SPSS 16).
Compounds were treated as variables, and the profiles
evaluated represented the ‘cases’ for analyses. Stepwise
discriminant analyses were carried out to determine
whether the previously (morphologically) defined groups
(4 species) could be discriminated on basis of their che-
mical profiles and to evaluate which compounds mainly
discriminated between groups. Wilk's Lambda and the
percentage of correct assignment were used to estimate
validity of discrimination.

Morphometrical analyses

Specimens were macerated in lactic acid and mounted
in open cavity slides covered partly by a cover glass,
which allows turning each specimen for microscopic
analyses from all perspectives. Details of measurements
are given in [48].

Each statistical analysis for setae and notogaster
lengths was performed as Kruskal-Wallis-ANOVA-test
(H-test) for multiple tests over all populations. In cases
of significance, subsequently a pairwise Mann-Whitney-
Median-test (U-test) was used for detecting the signifi-
cant differences between population pairs.

The multi-dimensional cluster analysis of the qualita-
tive differences of notogastral setae between the popula-
tions were based on setal types where each of the 15
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setae (c; - p3) represents one dimension. The pairwise
numerical differences between the Trhypochthonius
populations of all notogastral setal types were used for a
tree-cluster analysis (complete linkage of all Manhattan-
City-Block-distances).

Molecular analyses

Total DNA was extracted from single specimens using
the DNeasy Tissue Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. PCR was per-
formed with the HotStarTaq Master Mix kit (Qiagen,
Hilden, Germany); the total reaction volume of 20 pl
contained 1.5 mM MgCl,, 100 pmol of each primer, 200
UM of each dNTP and 1 Unit of Taq-polymerase.

A 600 bp fragment of the mitochondrial coxI gene,
corresponding to the amino acid positions 19-218 of the
Steganacarus magnus (Oribatida) cox1 protein [74] was
obtained with the primers and protocol given in [12].
Nuclear sequences of the 18S rDNA (1,700 bp) were
amplified using primers and procedure described in
[13]. Sequencing was performed in both directions on
an ABI capillary sequencer. Sequences were deposited in
GenBank (18S data set: A. longisetosus HQ661379, T.
silvestris europaeus HQ661380-HQ661382, T. japonicus
forma occidentalis HQ711366-HQ711368, T. tectorum
HQ711369-HQ711371; coxI data set: A. longisetosus
HQ711372, T. silvestris europaeus HQ711373-
HQ711375, T. japonicus forma occidentalis HQ711376-
HQ711378, T. tectorum HQ711379-HQ711381).

Sequences were verified to be of oribatid mite origin
by comparisons with known sequences in GenBank
using the BLASTN search algorithm [75] and aligned by
hand in BioEdit 7 [76]. Models for sequence evolution
and corresponding parameters were estimated using
hierarchical likelihood ratio tests (hlrts) with Modeltest
3.7 [54]. Relative rate tests [77] were performed in
MEGA4 [78] using A. longisetosus as outgroup. Phyloge-
netic and genetic distance analyses were performed in
PAUP* [79]. We used the branch-and-bound option to
ensure finding the best tree within maximum parsimony
(MP) and maximum likelihood (ML) analyses.
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