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Abstract

Introduction: Many species of ambystomatid salamanders are dependent upon highly variable temporary wetlands
for larval development. High larval densities may prompt the expression of a distinct head morphology that may
facilitate cannibalism. However, few studies have characterized structural cannibalism within natural populations of
larval salamanders. In this study we used two species of larval salamanders, long-toed (Ambystoma macrodactylum)
and ringed salamanders (A. annulatum). Head morphometrics and stable isotopic values of carbon (6"3C) and
nitrogen (8'°N) were used to identify the presence or absence of structural cannibalism. Weather conditions were
also analyzed as a potential factor associated with the expression of cannibalistic morphology.

Results: Populations of salamander larvae did not consistently exhibit cannibalistic morphologies throughout
collection periods. Larval long-toed salamanders exhibited trophic polymorphisms when relatively lower precipitation
amounts were observed. Larval ringed salamanders were observed to be cannibalistic but did not exhibit polymorphisms
in this study.

Conclusions: Structural cannibalism may be transient in both species; however in long-toed salamanders this

morphology is necessary for cannibalism. Ringed salamanders can be cannibalistic without morphological adaptations;
however the cannibal morph may prolong the viable time period for cannibalism. Additionally, weather conditions may

alter pond hydroperiod, subsequently influencing head morphology and cannibalism.
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Introduction

Temporary wetlands are important habitats to the larval
development of many species of amphibians [1]. However,
such habitats inevitably undergo pond drying imposing
temporal and/or spatial limitations upon developing larvae
[1,2]. Wetland drying increases the risk of desiccation
while simultaneously increasing larval density and poten-
tially limiting food resource availability [2]. These restric-
tions can force larvae into feeding aggregations, increasing
the degree of intraspecific competition, and leading to ag-
gression and intraspecific predation [2-5].
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Larval amphibians exhibit sensitivity to intraspecific
competition and may express specific morphological
and/or behavioural adaptations leading to improved
foraging success and increased rate of development,
which allows for larvae to survive and escape inclement
conditions [3,6-11]. Many species of larval amphibians
may exhibit morphological adaptations that could
improve foraging success or alter the prey they con-
sume [e.g., 12-15]. In larval ambystomatid salamanders
such adaptations include enlarged feeding structures
(i.e. jaws and teeth), which increase the prey size larvae
are capable of consuming, and in turn increases their
potential trophic niche width [16,17]. These structural
polymorphisms have also been associated with canni-
balistic behaviour because they facilitate the consump-
tion of similarly sized conspecifics [18,19].
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Here, we used two model species of larval salamanders
(Ambystoma macrodactylum and A. annulatum) from
populations previously observed to exhibit the “cannibal-
istic morphology” [18,19]. Both species are explosive
breeders as they both produce large numbers of off-
spring over a short period of time and both utilize tem-
porary wetlands for breeding and larval development
[20]. However, these species differ in key aspects of their
breeding strategy. Long-toed salamanders tend to breed
synchronously, while ringed salamanders often breed
over a period of a month or more [20]. This difference
results in an age and size hierarchy within larval popula-
tions of ringed salamanders while populations of larval
long-toed salamanders tend to be of similar age and are
at least initially of similar size [20].

Studies documenting trophic polymorphism have pri-
marily shown cannibalistic behaviour under laboratory
conditions [19]. However, Nyman et al. [19] character-
ized the difference in head morphology of larval ringed
salamanders between cannibals and non-cannibals based
on gut content analysis from individuals in a natural
population. The purpose of our study was to further test
the linkage between cannibalism and morphology in two
species that produce larvae exhibiting the “cannibalistic
morph”. Additionally, since neither larval densities nor
pond conditions are static in natural populations we ex-
pect that expression of polymorphisms and/or cannibal-
ism may be transient within these populations among
years [18]. Larval long-toed salamanders from Oregon
were tested using morphological, and carbon (§'C) and
nitrogen (8'°N) stable isotopic data to compare differ-
ences in morphology with differences in trophic niche
occupation. Larval ringed salamanders from Missouri
were differentiated into cannibals and non-cannibals
based on gut-content analysis and compared for differ-
ences in head morphology and §°C and 8"°N values.
Climate data for collection sites were also used to iden-
tify weather patterns that may have influenced pond
condition and subsequently the ecology of salamander
larvae.

Results

Long-toed salamanders

A total of 98 larvae (June 2007 n = 24; August 2007 n = 14;
July 2008 n = 21; August 2008 n = 39) were sub-sampled
from the 197 larvae collected between 2007 and 2008.
Results of the PCA of the two sampling years indicated
that the first two components described 98.5% of the
total variation among variables (Table 1). The first princi-
pal component (PC1) described the vast majority of the
total variance (97.3%) and described variance in overall
size. The second principal component (PC2) described
1.2% of the total variance and characterized head shape.
This component described variation in PREHW. The
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Table 1 Eigenvectors for each morphometric in each
principle component and percent of total variation
explained by each principle component

Eigenvectors

Variable PC1 PC2
Mass 0.449 0.257
HL 0.449 0313
MHW 0.448 0465
SVL 0.446 -0.328
PREHW 0.444 -0.716
Percent of total variation 974 12

Bold values denote important variable contributions to principle components.

highly negative value of the eigenvector loading indi-
cates that increasing values of PC2 corresponds to a
decreasing PREHW. No significant difference was observed
in the overall sizes between salamander larvae col-
lected in 2007 and those collected in 2008 as cha-
racterized through a t-test of PC1; however a subsequent
t-test identified a significant difference in PC2 (¢(g9) = -5.6;
P <0.001).

Multivariate analysis of salamanders collected in June
2007 clustered based on head morphometrics (Figure 1A)
exhibited significant overall differences in SVL, mass,
83C and 8N (Hotelling-Lawley trace: Fiy19; = 12.2;
P <0.001). Univariate F-tests indicated that larvae classi-
fied in the cannibal group exhibited significantly larger
SVL (Fp1,22) = 7.2; P = 0.01), mass (F[102) = 56.1; P <0.001;
Figure 1B-C), and SN (Fl1,22) = 5.9; P <0.05; values sum-
marized in Table 2). However, no significant difference
was observed in §'°C values between cannibal and typical
groups of salamanders (Table 2; Figure 2). When these sal-
amanders were re-clustered based on 8"°N values, multi-
variate analysis identified a significant difference between
the putative cannibal and typical groups (Wilk’s Lambda =
0.5; Fi3,13) = 7.3; P <0.05). Subsequently, discriminant ana-
lysis of the transformed head morphometrics correctly
classified 100% of typical morphs (13 of 13) and 50% of
cannibal morphs (2 of 4) with a total correct classification
of 88%.

Multivariate analysis of salamanders collected in
August 2007 identified overall differences between indi-
viduals grouped based on head morphometrics where
predicted PREHW values were included (Figure 1A)
(Hotelling-Lawley trace: Fi40; = 12.2; P = 0.001). Univariate
F-tests subsequently identified significant differences in
mean SVL (F[;,15) = 20.2; P = 0.001), mass (F[;,12) = 46.6;
P <0.001; Figure 1B-C), and SN values (Fra2) = 46.6;
P <0.05; values summarized in Table 2). No significant dif-
ference was observed in mean (+SE) values of 8%3C
between groups (Table 2; Figure 2). When re-classified
based on 8'°N values, multivariate analysis identified sig-
nificant differences between groups in transformed head
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Figure 1 Mean (+SE) morphometrics of putative typical and cannibal morph larval long-toed salamanders (grouped based on head
morphometrics) collected in 2007: head length, maximum head width, and pre-ocular head width (A), snout-vent length (B), and mass
(C); and 2008: head length, maximum head width, and pre-ocular head width (D), snout-vent length (E), and mass (F).

J

morphometrics (Wilk's Lambda = 0.4; Fz50 = 4.7
P <0.05). Discriminate analysis correctly classified a total
of 93% of salamanders with 100% of the typical morphs
being correctly identified (7 of 7) and 86% of cannibal
morphs were correctly classified (6 of 7). Where pre-
dicted values of PREHW were excluded from analyses,
an overall difference between groups (classified based
on head morphology, excluding PREHW) was still
identified using multivariate analysis (Hotelly-Lawley:
Fl4,0) = 14.2; P = 0.001). Univariate F-tests also observed
significant differences in SVL (F;12) = 15.7; P <0.005)
and mass (F[y,10) = 47.6; P <0.001); however no signifi-
cant differences were observed between groups in 8*>C

and 8'°N values. No significant differences were ob-
served between groups (classified based on 8°N values)
using multivariate analysis of transformed head mor-
phometrics where PREHW values were excluded.
Significant differences were observed between salaman-
ders grouped based on head morphometrics using
multivariate analyses in both July (Hotelling-Lawley
trace: Fiy16 = 8.0; P=0.001) and August (Figure 1D)
(Hotelling-Lawley trace: Fig34; = 29.1; P <0.001) 2008.
Univariate F-tests identified significant differences be-
tween cannibal and typical morph groups in SVL (July:
Fi1,101 = 34.4; P <0.001; August: F 37 = 66.4; P <0.001;
Figure 1E) and mass (July: Fj; 19 = 24.2; P <0.001; August:
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Table 2 Mean (+SE) values of mass, snout-vent length (SVL), §'3C, and 8'°N for larval long-toed salamanders clustered
into putative cannibal or typical morphology groups based on head morphometrics collected in June and August

2007, and July and August 2008

Year Month Morphology n Mass (g) SVL (mm) 86"3C (%o) 8"°N (%o0)
2007 June Cannibal 04+00 215+03 -276+03 72+04
Typical 12 03+00% 209+0.1% -284+02 62+0.1*
August Cannibal 3 09+0.1 344+1.1 -24.7+0.1 10.7£04
Typical " 0.6+00t 286+ 061 -249+0.1 93+0.2*
2008 July Cannibal 12 0.1+00 139403 -279+04 54+04
Typical 9 0.1+ 0.0t 11.6+021 -27.3+05 58+04
August Cannibal 14 25+03 384+10 -264+£04 66+02
Typical 29 09+00t 292 +£061 -258+02 66+0.1

Symbols denote significant differences between putative cannibal and typical groups for each sampling period: + <0.001; # <0.01; * <0.05.

Fj1,37) = 121.1; P <0.001; values summarized in Table 2;
Figure 1F). However, no significant differences were ob-
served in 8'3C or 8'°N (values summarized in Table 2;
Figure 2) in either month. When salamander larvae were
re-classified into groups based on 8'°N values no signi-
ficant differences were observed through multivariate

analyses between cannibal and typical groups in either
July or August. Multivariate analyses indicated no sig-
nificant differences between salamander groups in over-
all head morphometrics in July or August.

Multivariate comparison of weather data identified no
overall significant difference between years. However, while
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Figure 2 Mean (+SE) 6'C and "N values of putative typical and cannibal morph (grouped based on head morphometrics) larval
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not statistically different the mean temperature was rela-
tively lower in 2008 relative to that of 2007). Conversely,
the mean (+SE) precipitation was lower in 2007 than in
2008 and the sum of precipitation was more than 150 mm
lower in 2007 relative to the same time period in 2008
(values summarized in Table 3). Additionally, there was a
greater influx of precipitation in early spring in 2008,
which may have maintained or increased pond size during
early larval salamander development (Figure 3).

Ringed salamanders

Of the 669 salamander larvae collected 124 larvae were
sub-sampled for stable isotope and statistical analysis.
A total of 14 salamander larvae were identified as de-
finitively cannibals based on gut contents from the
total collection and were only observed between col-
lection weeks 3-16 (November 2, 1994 — February 7,
1995). A total of 73 non-cannibals collected from the
same time period as the observed cannibals, were ran-
domly selected from the total collection. A total of 37
hatchling salamanders were collected from weeks 1
and 2 (October 20 — 28, 1994) and were used as ap-
proximations for putative conspecific prey in analyses
of morphometrics and stable isotope values.

Among the three groups of salamanders overall signifi-
cant differences were observed in SVL (Fp 123 = 209.2;
P <0.001), mass (F[p123; = 137.4; P <0.001), MHW
(Fpa, 123) = 165.4; P <0.001), and GW (F{, 123 = 167.9;
P <0.001). Pairwise comparisons identified no differ-
ence between cannibals and non-cannibals in SVL,
mass, MHW or GW (all P >0.05; values summarized in
Table 4). Hatchlings were significantly smaller in SVL,
mass, MHW, and GW relative to both cannibals and non-
cannibals (all P <0.001; summarized in Table 4; Figure 4).
These results further validate that hatchlings represent po-
tential prey as their mean MHW (the widest portion of
their body) of hatchlings is smaller than the mean gape
width of both cannibals and non-cannibals (Figure 4A).

Multivariate analysis of stable isotopic values of the
three salamander groups identified an overall significant
difference among these groups (Hotelling-Lawley trace:
Fla, 242) = 33.1; P <0.001). Univariate F-tests identified no
significant differences among groups in 82C values;
however an overall significant difference was observed
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Figure 3 Monthly mean (+SE) precipitation data for Sisters,
OR between September 2006 — August 2007, and September
2007 - August 2008.

among groups in 8'°N values (Fla, 123) = 64.7; P <0.001;
Table 4). Pairwise comparisons identified significant differ-
ences in 8"°N values between hatchlings with both canni-
bals and non-cannibals (both P <0.001; Table 4; Figure 5);
however no significant difference was observed between
cannibals and non-cannibals.

Comparison of head morphology between cannibal
and non-cannibal larvae identified no difference in the
ratios of MHW or GW to SVL (equivalent slopes). No
differences in either head morphometric were observed
when adjusted for differences in SVL.

No significant difference in overall weather was observed
between years through multivariate analysis. However,
mean (+SE) precipitation and temperature was higher in
1994-95 relative to 1983-84 . Similarly, the total observed
precipitation was nearly 100 mm greater in 1994-95 rela-
tive to 1983-84 (results summarized in Table 3). Predictive
regression suggested that pond width potentially remained
relatively consistent or shrank slightly from October 1983
to May 1984 based on weather data from this period.
Nyman et al. [19] observed that the pond had a maximum
surface area of 150 m” and a depth of <70 cm and this was
reduced through the summer. Conversely, pond measure-
ments recorded over the 1994-1995 collection period show
an increase in pond width by approximately 5 m from

Table 3 Mean (+SE) temperature and precipitation, and total precipitation data for Sisters, OR between September
2006 - August 2007 and September 2007 - August 2008, and for Reeds Spring, MO between October 1983 - May

1984, and October 1994 - May 1995

Location Year Mean temperature (°C) Mean precipitation (mm) Total precipitation (mm)
Oregon 2007 81+21 259+92 3114

2008 72+2.1 398+11.1 4774
Missouri 1983 76£27 104.1+£158 832.6

1994 92+£19 1159+266 9274
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Table 4 Mean (+SE) values of mass, snout-vent length (SVL), maximum head width (MHW), gape width (GW), &3¢, and
8"°N among cannibalistic, non-cannibalistic, and hatchling larval ringed salamanders

Group n Mass (g) SVL (mm) MHW (mm) GW (mm) 8"3C (%o0) &"°N (%o)
Cannibal 15 05+01° 241+12° 78403 68+03° 21.7+04° 75+03°
Non-cannibal 73 04+00° 233+05° 78+0.1° 68+0.1° 226403 74+01°
Hatchling 38 0.03+001° 114+07° 35+02° 29+02° 219+03° 54+02°

Different letters denotes significant difference between groups.

October 1994 (mean+ SE: 8.6 +1.5 m) to May 1995
(mean + SE: 13.3 + 0.3 m; Figure 6A). Additionally, we ob-
served relatively high precipitation in November 1994,
which corresponds with the initial increase in pond size.
Similarly, the additional influx of precipitation during
the colder winter months and early spring appear to
maintain and increase pond size throughout the deve-
lopmental period of these larvae (Figure 6A,B).

Discussion

The results of this study suggest that a linkage between
cannibalism and head morphology occurs within natural
populations of both species of larval salamanders. How-
ever, the necessity for enlarged head morphology to facili-
tate cannibalism appears related to the breeding strategies
of salamanders. Additionally, our results suggest the ex-
pression of polymorphisms within these larval populations
is transient and potentially related to the hydrological con-
dition of natal ponds.

Food availability and conspecific density influence the
expression of intraspecific aggression and cannibalistic
behaviour [2,4,5,21,22]. Where larval salamander densities
are naturally high, and/or where pond conditions act to in-
crease larval densities (ie. pond drying) larvae may be
forced into aggregations around limited food resources
leading to increasingly high degrees of competition [2,23].
Peacor and Pfister [8] indicated that intra-population
size variation of larval amphibians raised at high popu-
lation densities resulted from phenotypic adaptations
(‘size-independent’ factors) causing differences in for-
aging efficiency among individuals [24]. Acquisition of
limited resources can therefore be improved in individ-
uals with these advantageous traits [8]. The effects of
these traits then become increasingly pronounced with in-
creasing competition, and thus an increased size disparity
develops among individuals within the population [8].
Therefore, increasing density could potentially result in
the expression of a specialized head morphology that facil-
itates cannibalism. Simultaneously high larval density
could provide the opportunity for cannibalism by forcing
putative cannibals and their prey into proximity of each
other.

Our results suggest larval long-toed salamanders ex-
hibited variation in their head morphologies in 2007
(Figure 1A), and those individuals exhibiting the larger

head morphology occupied a significantly higher trophic
position based on 8N values. Additionally, the observa-
tion that putative cannibals exhibited a significantly greater
mass than typical larvae was similarly observed by Wildy
et al. [25]. These results suggest the presence of a linkage
between cannibalism and head morphology. However, no
such relationship was observed among larval salamanders
collected from the same wetland in 2008. This difference
may be due to the concurrent breeding strategy of long-
toed salamanders [20]. Since these salamanders breed
explosively, all larvae within a population should be ap-
proximately the same age and of similar size. Petranka and
Thomas [26] suggest that the evolution of synchronous
breeding was influenced by the efficiency of larval amphib-
ian cannibalization of vulnerable conspecifics. Indeed, syn-
chronized breeding can reduce the risk of cannibalism by
limiting the differences in size and development among in-
dividuals [26,27]. Therefore, specific adaptations in head
morphology (i.e. the cannibal morphology) may greatly
facilitate the ability of individuals of this species to con-
sume conspecifics [12,14,28,29]. The greater gape size
of the putative cannibal morphs provides these individ-
uals an initial benefit by improving their ability to con-
sume larger prey, including similarly sized conspecifics
[28]. Successful cannibals may experience subsequent
predation success resulting from the increased growth
facilitated by cannibalism [25,29,30].

Our observations of larval ringed salamanders appear
to contradict those of Nyman et al. [19] who found signifi-
cant differences in head morphology and shape between
cannibals and non-cannibals. Additionally, Nyman et al.
[19] observed the presence of cannibalistic larvae within
the pond until April, approximately to the observed initi-
ation of metamorphosis. Conversely our last observation
of cannibalism occurred in February. Ringed salamanders
breed over a period of a month or more, providing a nat-
ural size differentiation among larvae of different age clas-
ses [20]. This moderately extended breeding period may
allow cannibalism to occur without the expression of spe-
cific head morphologies [19,20]. However, it is possible the
expression of larger head morphology could prolong the
period during which larvae can consume conspecifics.
Alternatively, if larval densities were sufficiently low the
occurrence of cannibalism may also be reduced due to in-
sufficient opportunity [23]. Similarity in stable isotopic



Jefferson et al. Frontiers in Zoology 2014, 11:76 Page 7 of 11
http://www.frontiersinzoology.com/content/11/1/76
10 1 8r
A C—3 MHW
— GW I .
_ 8= I o 1
E = Tt T
~ 6 L \g
ﬁ <
n . F
© 4 T ‘_!O
o T 671
T
2 L
0 5 ' ' ' ‘
-23.0 -22.5 -22.0 -21.5 -21.0
1B 5"°C (%o)
25 ¢ T
£ L O Non-Cannibals
20+ A Cannibals
£ [0 Hatchlings
€
= 157 Figure 5 Mean (+SE) §'3C and 8'°N values among cannibal,
> T non-cannibal, and hatchling ringed salamander larvae.
? 10t .
5r 14 ¢
A -0O- 1983-84
0 13 | —A— 1994-95
0.7 7 E 2}
C £
0.6 o |
T = 11
0.5 °
_ I J S 10t
204 o
= 0.3 1
02} 8
250
0.1
0.0 o o - . 200
N\ AN > IS
& & & E
> > 3© = 150 |
< © N 5
N =
<° S
Salamander Type % 100 ¢
Figure 4 Mean (+SE) morphometrics of cannibal, non-cannibal, o
and hatchling larval ringed salamanders. Maximum head width, o 50
and gape width (A), snout-vent length (B), and mass (C) collected
between October 1994 — February 1995. 0

values between cannibal and non-cannibal groups could
be the result of one or more of the following situations: 1)
gut content analysis provides only a snap-shot of feeding;
cannibalism may have occurred but was not observed
in members of the non-cannibal group because conspe-
cific prey were completely digested prior to capture; 2)
cannibalistic individuals were observed to have ingested

S o o ® S
ov éo 0@ N @’0 ?9 @Qﬁ

Month

Figure 6 Pond widths of Kirby’s pond, Reeds Spring, MO and
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width over the same time period in 1983-84 (A), and the monthly
mean precipitation observed in the area for both time periods (B).
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conspecifics but had not digested this prey and therefore
would not have assimilated this diet into their tissues; and
3) cannibalism does not represent a significant contribu-
tion to the overall diet of salamanders and therefore does
not significantly alter the isotopic values of cannibals [31].
The most probable cause of this result is that cannibalism
represents a relatively low proportion of the larval sala-
mander diet. Conspecific prey was sufficiently large to fill
and/or exceed the upper digestive tract of the observed
cannibals. This suggests that digestion would take much
longer than smaller invertebrates, which make up the ma-
jority of larval salamander diet [19]. Therefore, it is pos-
sible that cannibalism is relatively common among
individuals; however the frequency of cannibalistic behav-
iour in any individual would be relatively low.

The transient nature of these trophic polymorphisms may
have been, in part, related to the differences in precipitation
between collection years. Brooks [32] observed that the
water level of temporary wetlands was significantly related
to precipitation. We observed that while there was no sig-
nificant difference in precipitation or temperature between
collection years in either study, the sum of precipitation was
greater in years where cannibalistic morphs were absent.
More importantly, the timing of the observed influxes of
precipitation suggests that pond size may have been main-
tained or increased in cases where no differentiation in head
morphology was observed among larval salamanders. Our
results appear consistent with those that may be expected.
However, the absence of comprehensive data regarding lar-
val densities, prey abundance, and pond conditions during
all sampling periods means it is not possible to definitively
conclude this timing as evidence of a causative relationship.

The results of this study support the linkage between
morphology and cannibalism in larval salamanders within
natural populations and the density dependent nature of
this relationship. The expression of rapid phenotypic adap-
tations to facilitate cannibalism may be the result of in-
creasing competition [3,5-7,18]. Differences in life history
among salamander species and weather patterns may also
have important consequences for the expression of poly-
morphisms and cannibalism. The ubiquitous assignment
of polymorphism across larval salamander species that ex-
hibit cannibalism may therefore be inaccurate.

If these assumptions are correct there may be serious im-
plications to population dynamics and survivorship of larvae
that could result from changes in climate and/or habitat
[32]. Long-term monitoring of polymorphic larvae in natural
populations, and comparison across multiple species may
therefore be necessary to develop a more complete under-
standing of the dynamics of this phenomenon.

Conclusions
Trophic polymorphisms are a potential competitive adap-
tation expressed by larval salamanders under conditions of
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high competition. Concurrent breeding species, such as
long-toed salamanders may be dependent upon such poly-
morphisms to facilitate intraspecific predation. Species that
are not concurrent breeders may be cannibalistic without
exhibiting the polymorphisms due to size differentiation
inherent within the population; however individuals exhi-
biting the cannibal morphology may be capable of intra-
specific predation for longer periods of time. Additionally,
it appears as though the expression of these trophic poly-
morphisms may be influenced by seasonal precipitation
and temperatures. Therefore, trends towards warmer drier
climates could influence population dynamics of larval
salamanders resulting in increased expression of trophic
polymorphisms and cannibalistic behaviour.

Materials and methods

Field collections

Long-toed salamanders

Long-toed salamander larvae (A. macrodactylum) were
collected with net sweeps performed from along the
pond shoreline at two sampling periods in June and
August 2007, and in July and August 2008 from an
ephemeral montane pond located at an altitude of
1951 m above sea level in the central Cascade Moun-
tains, 24.2 km south of Sisters, Deschutes County,
Oregon. All larvae were physically euthanized by pithing,
measured for head and body morphometrics with ver-
nier calipers (to 0.1 mm), and frozen. Salamander larvae
were measured for head length (HL; tip of snout to at-
tachment point of first pair of gills), maximum head-
width (MHW; width across the head at its widest point),
snout-vent length (SVL; length from tip of the snout to
the anterior end of the vent), and pre-ocular head width
(PREHW; width across the head through bisecting line
through the external nares). Data for PREHW of
salamanders collected in August 2007 was lost and was
therefore estimated from regression analysis of these
characteristics against SVL from all other long-toed
salamander used in this study. Gut content analysis of
these specimens was not possible due to the physical
degradation that occurred from frozen storage. Speci-
mens were delivered to the University of Saskatchewan
in August, 2010.

Climate data of the collection area (near Sisters, Oregon)
for 2006 to 2008 were obtained from the Oregon Climate
Service, Oregon State University, Corvallis, Oregon, USA.
Precipitation and temperature data from September prior
to sampling periods to the end of each sampling period
(i.e. September 2006 — August 2007 and September
2007 — August 2008) was selected to characterize dif-
ferences in weather conditions between sampling years.
Extended weather data were included due to the poten-
tial influence of fall and winter precipitation on the
hydrologic condition of the pond.
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Ringed salamanders

Larval ringed salamanders were collected from Kirby’s
Pond in Stone County, Missouri, approximately once a
week from 20 October 1994 to 11 May, 1995. Four 1-m*
quadrats were produced from PVC tubing and were set in
place within the pond. Location of each quadrat within the
pond at each sampling period was assigned by using ran-
domly generated numbers to determine the compass head-
ings and distance from the perimeter of the pond;
quadrats did not overlap. Specimens were collected by
sweeping a large net through the quadrat in parallel rows
for the entire area, followed by a second sweep of the
quadrat with a smaller net in an ‘S’ formation.

Collections from each quadrat were sorted immedi-
ately on shore. During the first eight collection periods,
the first 10 salamander larvae were euthanized and pre-
served by submersion in 70% EtOH; for subsequent col-
lections only the first five salamander larvae sorted were
kept and preserved. Larval ringed salamanders were
measured with vernier calipers (to 0.1 mm) for SVL,
MHW, and gape width (GW; gape width measured at
posterior edges of the mouth).

Specimens were delivered to the University of
Saskatchewan in August, 2012. Larval ringed salaman-
ders were randomly selected from the overall collection
and were dissected to analyze contents of the upper
digestive tract to distinguish cannibals from non-
cannibals. Ingested conspecifics found in the digestive
tract of cannibals were not measured for morphometrics
due to physical degradation from digestion and long-
term preservation. However, hatchling salamanders with
partially formed hind limbs collected from the same col-
lection periods as cannibals were used to approximate
the morphometrics and stable isotopic values of individ-
uals representing potential prey for cannibals.

For the purpose of comparative morphology between
cannibals and non-cannibals, the methods documented
in Nyman et al. [19] were followed wherever possible.
Cannibals were strictly categorized as individuals that
had ingested conspecifics that were clearly identifiable
within their digestive tract. Similarly, non-cannibals were
categorized as individuals with conspecifics absent from
their stomach contents. Non-cannibal specimens se-
lected for comparison with cannibals were restricted to
those collected over the same time period as cannibalis-
tic specimens (weeks 3-16) and having a minimum SVL
no smaller that of the smallest cannibal (16.3 mm) [19].
Due to the physical degradation of ingested conspecifics
occurring as a result of partial digestion, hatchling sala-
manders collected from weeks 1-2 were used to provide
approximate morphometrics and stable isotope values of
consumed conspecifics.

Precipitation and temperature data for the collection
area (Galena, Missouri) for the October to May collection

Page 9 of 11

periods for both 1983-84 and 1994-95 were obtained
from the High Plains Regional Climate Center, Lincoln,
Nebraska.

Sub-sampling from original collections of both sala-
manders species were performed using random number

sets generated in Excel (Microsoft Corporation, Santa
Rosa, CA, USA).

Stable isotope analysis

Specimens were freeze dried in a Labconco Corp.
Freezone® freeze drier for approximately 24 hr. Freeze-
dried whole body tadpoles were pulverized to a fine
powder, weighed and packaged at the National Hydrol-
ogy Research Center (NHRC) of Environment Canada,
Saskatoon, SK, Canada. Dry powder samples were pack-
aged in ~0.1 mg portions, using Elemental Microanalysis
Ltd. 5 x 3.5 mm tin capsules. Samples were subsequently
submitted for 8'*C or 8'°N analysis to the Stable Isotope
Hydrology and Ecology Research Laboratory at NHRC,
and the Stable Isotope Laboratory of the Department of
Soil Science, University of Saskatchewan. Values for
8'3C or 8'°N were expressed relative to Vienna Peedee
Belmnite (VPDB) and air, respectively in parts per thou-
sand (%o) [33].

Statistical analysis

Long-toed salamanders

A principle component analysis was performed on SVL,
MHW, HL, and PREHW, and the first two components
were retained. These components were then analyzed
using two 2-sample independent ¢-tests to identify mor-
phological differences between larval populations be-
tween 2007 and 2008.

We used two approaches to validate our findings. First,
we classified the cannibal status of the individuals based
on head morphology and tested for difference in size and
stable isotope signatures. Since collections were conducted
over four separate sampling periods (June 2007, August
2007, July 2008, August 2008) analysis of larvae was ini-
tially conducted independently for each sampling period.
Morphometric data was log transformed where it violated
parametric assumptions. Two group K-means cluster ana-
lyses were used to initially classify salamanders into two
groups based on values of head morphology traits (HL,
MHW, and PREHW). Larvae classified into the group with
the larger head morphology were considered putative
cannibal morphs while the group of larvae exhibiting
the smaller head morphology were considered putative
typical morphs. Separate one-way multivariate analyses of
variance (MANOVA) were used to identify differences in
log-transformed values of mass and SVL, and in non-
transformed 8'°C and 8'°N values between groups of
salamander larvae in each collection period.
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In the second approach, larvae were re-classified into
two groups using K-means cluster analyses based on
8'°N values. Where salamander larvae were classified in
this manner, the groups exhibiting the higher §'°N
values were labelled the cannibal morphs and the group
with lower values were labelled as the putative typical
morphs. Differences in head shape were also assessed
using a discriminate analysis with Wilk’s lambda distri-
bution analysis of allometric transformations of head
morphometrics (HL, MHW, and PREHW). We per-
formed an allometric transformation procedure from
Reist [34] as used by Nyman et al. [19] to isolate shape
components of head dimensions. The predicted variable
(Y) was derived for each head morphometric for each
individual from the formula Y = 10 k; where k is the log
adjusted value of e, and where e =1log Y — B(log X — log
Xsv); where Y is the original head morphometric, B is
the regression coefficient of log Y and log SVL, and Xgyvi
is the grand mean of SVL for all larvae. This transform-
ation adjusts the original measurements to values ex-
pected for mean body size [19].

Differences in temperature and precipitation for each col-
lection year were compared using a one-way MANOVA.

Ringed salamanders

Larval salamanders were classified as cannibals or
non-cannibals based on the presence or absence of
conspecifics in their digestive tract, respectively. One-
way analyses of variance (ANOVA) tests with post-
hoc Tukey HSD pairwise comparisons were used to
assess differences in log-transformed values of SVL,
mass, MHW, and GW among cannibals, non-cannibals
and hatchlings. A one-way MANOVA with post-hoc pair-
wise comparisons was used to identify differences in §**C
and 8N values among cannibal, non-cannibal, and
hatchling salamanders. Log-transformed values of head
morphometrics (MHW and GW) of larvae were tested be-
tween groups using two analyses of covariance (ANCOVA)
with the log-transformed values of SVL as the covariate.

Head morphometrics were transformed using the
aforementioned allometric transformation. A discrimin-
ate analysis with Wilk’s lambda distribution test was
used on the transformed head morphometrics to explore
the relationship between head morphology and observed
cannibalism.

Precipitation and temperature data collected from
September of the previous year to June of the sampling
year. Temperature and precipitation values were tested
using a one-way MANOVA. Pond width was recorded at
every collection period in 1994-95; however such infor-
mation was absent from the 1983-84 collection period
described by Nyman et al. [19]. To identify the potential
difference in pond condition between sampling years we
used a predictive regression of precipitation, temperature,
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and pond widths from 1994-95 to produce representative
widths for the pond in 1983-84.

Analyses in both studies were performed using Systat
[35]. Outliers were removed where identified through
the statistical software. A conservative testing procedure
was adopted independently for each experiment by
adjusting significance levels using the Holm-Bonferroni
correction [36], to reduce the risk of committing a type
one error [37]. All figures were produced using Sigma-
Plot (Systat Software, San Jose, CA, USA).
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