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Abstract

Background: Large numbers of endemic species inhabit subantarctic continental coasts and islands that are
characterised by highly variable environmental conditions. Southern hemisphere populations of taxa that are
morphologically similar to northern counterparts have traditionally been considered to be extensions of such
Northern hemisphere taxa, and may not exhibit differentiation amongst geographically isolated populations in the
Southern Ocean. Smooth-shelled blue mussels of the genus Mytilus that exhibit an anti-tropical distribution are a
model group to study phylogeography, speciation and hybridisation in the sea, and contribute to the theory and
practice of marine biosecurity.

Methods: We used a single nucleotide polymorphism (SNPs) panel that has the ability to accurately identify
reference Northern and Southern hemisphere Mytilus taxa to test for evolutionary differentiation amongst native
Southern Ocean island populations.

Results: Native mussels from the Falkland Islands and the Kerguelen Islands exhibited greatest affinity to native

M. platensis d'Orbigny 1846 from the Atlantic coast of South America. The major Southern Ocean current flow from
west to east is likely to explain the spreading of M. platensis to remote offshore islands, as adults via the process of
rafting or perhaps directly as larvae. SNPs variation revealed that mussels from Tasmania were native and clearly
differentiated from all other blue mussel groups in the Southern and Northern hemispheres. The native mussels

M. planulatus from Tasmania and from mainland New Zealand (NZ), and tentatively M. goteanus from the two
NZ Southern Ocean offshore island groups (the Auckland Islands and Campbell Island), formed a distinct

M. galloprovincialis—like Southern hemisphere group with closest affinity to Northern hemisphere M. galloprovincialis
from the Mediterranean Sea. In all cases, the SNPs revealed evidence of hybridisation between two or more distinct
taxa. The invasive Northern hemisphere M. galloprovincialis was identified only in Tasmania, amongst native mussels of
a distinct Australian M. planulatus lineage.

Conclusion: Overall, our results reveal that Southern hemisphere island mussels have mixed genome ancestry and are
native, not introduced by human activities. The preservation of distinct evolutionary lineages of Southern hemisphere
species needs to be an ongoing focus of conservation efforts, given that population sizes on some of the remote
offshore oceanic islands will be small and may be more easily adversely affected by invasion and subsequent
hybridisation and introgression than larger populations elsewhere.
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Background

Subantarctic continental coasts and remote island inter-
tidal zones are characterised by intermediate levels of
biodiversity and large numbers of endemic species [1].
Morphologically similar Southern hemisphere popula-
tions have traditionally been considered to be extensions
of Northern hemisphere populations and taxa, or undif-
ferentiated populations in the Southern Ocean. Increas-
ingly, over the last two or three centuries, anthropogenic
activities have, however, resulted in the blurring of pat-
terns of natural distributions, even in remote locations,
often with profound ecological, economic and social
costs [2-4]. Because of increased human activities,
including maritime traffic, geographic ranges of endemic
marine species may be extended, their populations
mixed via hybridisation or endangered by invasions of
alien species [5]. In addition, ocean rafting is increasingly
recognised as an important natural method of range ex-
pansion of some marine taxa [6, 7] and there is evidence
that increased storm activity resulting from global
warming may help to break down the geographic isola-
tion of regions such as Antarctica [8]. Whilst the natural
distributions of some marine species may be relatively
easy to identify in the absence of human-mediated acci-
dental or deliberate movements, for many other species
this may not be the case. Understanding the natural pat-
terns of species distributions in the Southern Ocean
have long been a challenge, given the scale of the en-
deavour, but this challenge is increasingly becoming
more difficult due to recent mixing of species and the
blurring of species’ natural distributions.

For some species, including smooth-shelled blue mus-
sels of the genus Mytilus, the translocation of individuals
may result in extensive erosion of species differences
(genotypic and phenotypic) and the disruption of natural
patterns of distribution, because such mussels are known
to hybridise and backcross extensively in almost all cases
where two or more species co-exist [9-11]. Invasive blue
mussels, in particular the Northern hemisphere Mediter-
ranean mussel, Mytilus galloprovincialis, occur in many
regions of the world (refer to [4, 12, 13]) and in some
regions, such as the Pacific coast of the United States,
have out-competed and largely replaced the native
species [14—16]. The mechanistic basis of this invasion
success is presently unknown, but evidence points to the
greater thermal tolerance of M. galloprovincialis over its
congenerics [17].

Smooth-shelled blue mussels of the genus Mytilus are
a model group that provide excellent opportunities to
examine phylogeography, evolution, speciation and hy-
bridisation in the sea and to test the theory and practice
of marine biosecurity. Blue mussels are naturally widely
occurring, with an anti-tropical distribution, in all areas
except polar regions [12, 18]. They are remarkably
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tolerant of environmental variation [19], and are
ecosystem engineers [20, 21]. In many parts of the world
mussels are an important source of protein, both in terms
of wild harvest and aquaculture production [22—24]. Over
the last 50 years or so, a better global understanding of the
phylogeography, taxonomy and systematics of smooth-
shelled blue mussels of the genus Mytilus has been
achieved with a range of genetic marker types, from allo-
zymes (protein variation) [25-30], through mitochondrial
DNA (mtDNA) sequencing and restriction fragment
length polymorphisms (RFLPs) [31-42], to nuclear DNA
markers [43-48], such as microsatellites [49-55] and,
most recently, single nucleotide polymorphisms (SNPs)
[56—61]. The development and application of each new
generation of molecular marker type has provided new
insight into the phylogeography and the biosecurity threat
of blue mussels in a global perspective. The recent devel-
opment of SNPs for mussels of the genus Mytilus [62] and
their application to mussels from New Zealand [4], Chile
[13] and Argentina [63] has revealed profound and
consistent genetic differences amongst multiple Southern
hemisphere evolutionary lineages. The SNPs data also
confirm, in all of these regions, the existence of invasive
Northern hemisphere M. galloprovincialis and/or the
hybridisation and introgression of non-native genes into
the native lineage.

Whilst the phylogeography and taxonomy of native
Southern hemisphere blue mussels is becoming clearer fol-
lowing the application of the SNP markers, most of the
work to date has focussed on collections from coastal sites
on major land masses. One topic that has not been investi-
gated in any depth is the question of the phylogeography
of blue mussels on remote offshore islands in the southern
Atlantic, Indian and Pacific oceans. These islands are very
small land masses in a very large expanse of ocean that
effectively encircles (below latitude 55°S) the Southern
hemisphere, and which may provide some degree of con-
nectivity for marine species with pelagic larval durations
that are long enough to move from one stepping stone
island to another [64—66] and/or may be capable of long
distance movement via a process such as rafting on kelp
[7, 67]. To date, the only SNPs investigation of New
Zealand (NZ) Southern Ocean blue mussel island popula-
tions has highlighted the existence of unique island line-
ages and also introgression of non-native genes into island
mussel populations [4]. Despite their remoteness, the NZ
Southern Ocean islands do not have a refuge from invad-
ing mussels, and may, perhaps, act as a stepping stone for
the introduction of invasive mussels, or at least for mussels
with introgressed genes, to establish on Antarctic shores
[68, 69]. These findings highlight the urgent need to de-
scribe and better understand the biogeography of blue
mussels (and other marine taxa) found on the small and
isolated islands of the Southern Ocean.
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The aim of the present research was to determine the
genetic differentiation, phylogeography and the taxonomic
status of blue mussels from Southern Ocean islands and
to investigate the extent, if any, of introduction of non-na-
tive blue mussels and their hybridisation and introgression
with native species. We used SNPs that differentiate
amongst mussel populations from the Southern
hemisphere, including Argentina (M. platensis), Chile (M.
chilensis) and New Zealand (Southern hemisphere M. gallo-
provincialis-like) and also amongst reference Northern
hemisphere taxa (M. edulis, M. galloprovincialis, M. trossu-
lus) [4, 13, 63]. We assayed SNP variation in mussels from
the Falkland Islands (South Atlantic Ocean), Kerguelen
Islands (South Indian Ocean) and from Tasmania (South
Pacific Ocean). We also tested for the occurrence of hy-
bridisation and introgression between native populations
and invasive blue mussels. This works contributes to on-
going efforts to better understand the natural distribu-
tions, patterns of genetic connectivity across large ocean
in scales and evolutionary affinities of blue mussels in the
Southern hemisphere.

Methods

Sample collection and SNP genotyping

Mytilus spp. samples that consisted of 77 individuals of
mixed ages and sizes (5-50mm shell length) were
collected from six localities at the Falkland (Malvinas)
Islands (2 sites), the Kerguelen Islands (3 sites: I3B,
BO100av and IS in Gérard et al. [70]) and Tasmania (1 site)
between 2002 and 2015 (Fig. 1, Table 1). Whole specimens
or tissue samples were stored in 96% ethanol. DNA was
isolated from the mantle tissue using a modified CTAB
method [71]. Thirteen previously described reference sam-
ples including 354 specimens were included: M. edulis
from the Atlantic coast of USA and Northern Ireland, UK;
Northern hemisphere M. galloprovincialis from the
Atlantic coast of Spain and the Mediterranean Sea; native
Southern hemisphere M. galloprovincialis-like mussels
from mainland New Zealand and from Southern Ocean
offshore islands; M. trossulus from Atlantic Canada
(Halifax, Nova Scotia) and Pacific Canada (Vancouver,
British Columbia); M. chilensis from Chiloé, Chile and
Ushuaia, Strait of Magellan, southern Argentina); and M.
platensis from Comodoro Rivadavia on the Atlantic coast
of Argentina [4, 13, 62, 63, 72]. To identify amongst popu-
lations and to identify instances of hybridisation, 79 SNPs
that differentiate amongst species were used [4, 62, 63].
Samples were genotyped using the Sequenom MassARRAY
iPLEX genotyping platform [73].

Data analysis

Genetic diversity

Populations were analysed for allele frequencies, pro-
portion of polymorphic SNPs (Pp) genetic diversity,
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observed (Hp) and expected (Hg) heterozygosity, genetic
differentiation (pairwise Fst), and inbreeding coefficient
(F1s) using Arlequin v. 3.5.1.2 [74]. Departures from
Hardy-Weinberg equilibrium (HWE) were tested by
exact test, and significance was determined by Markov
chain Monte Carlo simulations. The false discovery rate
(FDR-BY) was used to correct significance (P) values
after multiple testing [75, 76].

Population genetic differentiation and structure

Fgr distance measures in the Newick format, obtained in
POPTREEW [77], were used to construct a neighbour-
joining (NJ) tree illustrating the genetic relationships
amongst populations. Correspondence analysis (CA;
Benzécri [78]), implemented in GENETIX [79] was used
to visualise genetic substructure amongst populations and
individuals. Population structure was inferred by deter-
mining the number of clusters (groups) observed without
prior knowledge of sampling location. Bayesian clustering
using STRUCTURE v. 2.34 software with the model as-
suming admixture, ignoring population affiliation and
allowing for the correlation of allele frequencies amongst
clusters was used to infer groups [80, 81]. The most ap-
propriate number of genetic clusters was determined by a
diagram-based comparison of log-likelihoods for values of
K ranging from one to the study number of populations
plus one. At least five runs were used for each Kvalue, fol-
lowing the method described by Evanno et al. [82]. The
length of burn-in period was 50,000 and the number of
MCMC cycles after burn-in was 100,000 iterations each.
Genetic assignment was obtained by using two methods.
Following the STRUCTURE analysis, a threshold value of
q =0.8 was used to assign individuals to clusters. Individ-
uals with g-values from 0.2 to 0.8 were considered to be
potentially admixed [83].

Genetic assignment of individuals to population of ori-
gin was carried out using frequency criteria on the basis
of multilocus genotype data [84] and the Bayesian
method of Rannala & Mountain [85] implemented in
GeneClass2.0 [86]. Individuals were considered to be
correctly assigned to their location of origin if the as-
signment probability to that group was higher than any
other assignment probability to any other group.

Hybridisation and introgression

The likelihood of hybridisation and introgression was
assessed using the software NewHybrids v1 [87]. NewHy-
brids was used to estimate the posterior probability that in-
dividuals from the Falkland Islands, the Kerguelen Islands,
Tasmania and from the NZ Southern Ocean islands fell
into one of the genotypic categories: M. platensis, M. chi-
lensis, Northern hemisphere M. galloprovincialis, Southern
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Fig. 1 Location of the 19 samples of Mytilus from Falkland Islands, the Kerguelen Islands, Tasmania and reference samples from Northern and
Southern hemisphere (ArcGIS). Sampling site names and coordinates are in Table 1. The pie charts visualise the proportions of the inferred
clusters (K=6) computed with Structure for 19 studied samples

hemisphere M. galloprovincialis-like, F1 hybrids, F2 hybrids
and backcrosses.

Results

Genetic diversity

Eight samples from four regions (the Falkland Islands,
the Kerguelen Islands, Tasmania, and the NZ Southern
Ocean islands) encompassing the South Atlantic Ocean,

the South Indian Ocean and the South Pacific Ocean
were analysed for SNP variation, along with reference
populations from both the Northern and Southern
hemispheres. Of 79 SNPs assayed, 53 were used for ana-
lysis (Table 1, Additional file 2: Table S1 and Additional
file 3: Table S2).

The proportion of polymorphic SNPs (P,) for the eight
Southern hemisphere island populations ranged from
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Table 1 Localisation, number and genetic parameters of the 19 samples of Mytilus mussels

Av. no. of
Av. gene pairwise
diversity over  differences within Sampling
Name  Localisation Country Water area No. of indivivuals % Po  Ho Hi loci population Fis MAF  Coordinate Coordinate year
FIBI Bense Island, Falkland Great Britain  Atlantic 9 30.189 0229 0313 0.070 3.850 0171 0.059 51°31'34.02"S  60°31'38.86" W 2002
FIST Stanley Wharf, Falkland Great Britain  Atlantic 13 26415 0365 0392 0.103 5.357 0.054 0072 51°4121.63"S 57°512.66" W 2003
KIH Henri Bossiere Fjord, Kerguelen ~ France Indian Ocean 1232075 0386 0.127 6.475 -0.072  0.091 49°2428" S 69°40'06" E 2003
KIS Ile Suhm, Kerguelen France Indian Ocean 11 30.189 0.389 0409 0.117 6.208 0.020 0.086 49°30'18" S 70°09'38" E 2003
KIT Tlot des Trois Bergers, Kerguelen  France Indian Ocean 12 33962 0289 0331 0.109 5.678 0.109  0.073 49°17'17"S 69°4223" E 2003
AKAR*  Akaroa South Island gce:lland Pacific 30 28302 0142 015 0040 2122 0.027  0.094 43°40'19" S 172°57'54"E 2008
AUCB*  Offshore Island gee;rand Pacific 20 39623 0192 0255 0077 4301 0.131  0.077 50°2923"S 166°1646" E 2004
CAMI*  Offshore Island Dennd Pacific 29 39623 0244 0279 0093 4898 0029 0063 52°3136"S  169°650"E 2004
PORA  Tasmania Australia Pacific 20 39.623 0.181 0234 0.082 4.209 0.124  0.066 43°829"S 147°51'23"E 2009
PZC*  Chiloe Chile Pacific 30 37736 0299 0332 0.127 6.464 0.083  0.074 42°240.54"S  74°1048.49"W 2012
UBC*  Ushuaia Argentina  Atlantic 28 32075 0331 0344 0.111 5.650 0.021  0.080 54°48'19.09"S  68°1734.31"W 2013
COM*  Comodoro Rivadavia Argentina  Atlantic 35 33962 0229 0269 0.086 4.549 0.122  0.070 45°56'00"S 67°3200.00"W 2014
IPL*  Islade los Pajaros Argentina  Atlantic 29 32075 0306 0309 0.091 4.909 20.026  0.117 42°25'16.60"S  64°30'58.99"W 2013
IRD*  Indian River, Delaware USA Atlantic 25 41509 0243 0268 0.111 5.755 0.084  0.099 38°3627.36'N  75°337.079"W 2012
LGF*  Lough Foyle E:E:d Alantic 26 49057 0223 0247 0109 5722 0.040 0027 55°535.50'N  7°44892°W 2006
CAM*  Camarinal Spain Atlantic 26 45283 0326 0351 0.152 8.057 0.051  0.066 36°448.01"N  5°47'58.00"W 2004
ORI*  Oristano Italy Mediterranean 29 4717 0295 0314 0.139 7.348 0.029 0.074 39°47'59.88"N  8°31'9.72"E 2006
VAN*  Vancouver Canada Pacific 19 35849 0267 0.292 0.089 4.603 -0.030  0.072 49°40'19" N 124°56'34" W 2006
KKAT*  Halifax Canada Atlantic 28 58491 0206 0246 0.131 6.933 0121 0.103 44°30'33.79"N  63°29'24.91"W 2003

* - reference samples, Po, % of polymorphic loci; Fis, inbreeding coefficient; Ho, observed heterozygosity; i, expected heterozygosity; values with P < 0.05 after Benjamini-Yekutieli correction are marked in bold

26.4 to 39.6%. Observed heterozygosity (H,) for 53 loci
amongst most samples was lower than expected (Hg).
The samples from the Kerguelen Islands were charac-
terised by high observed heterozygosity values and gene
diversity values, compared to the samples from the NZ
Southern Ocean islands (Table 1). Only nine of 1007 test
results involving five different loci were not in Hardy-
Weinberg equilibrium (HWE) after correction for mul-
tiple testing. Fsr values at individual SNP loci ranged
from 0.028 to 1.000, and 26 SNPs had Fst values signifi-
cantly different from zero (Additional file 2: Table S1).

Population genetic differentiation and structure

In total, 164 of 171 pairwise comparisons of Fsr values
were significantly different from zero after FDR-BY cor-
rection. Four of the seven non-significant values in-
volved samples from the Kerguelen Islands (Additional
file 4: Table S3). Greatest differentiation was observed
between the New Zealand M. galloprovincialis-like and
the Canadian M. trossulus samples.

The Falkland Islands and Kerguelen Islands samples
showed greatest similarity to reference M. platensis from
Comodoro, Argentina (Fst=0.04—0.15). Despite this,
the Falkland Islands and Kerguelen Islands mussels were
significantly differentiated, based on Fgr values. The
Tasmanian sample showed greatest similarity to the NZ
mainland population of Akaroa (Southern hemisphere
M. galloprovincialis-like) and then to the two Northern
hemisphere M. galloprovincialis populations.

The NJ tree based on the Fgy distance matrix revealed
six main clades: (1) M. trossulus, (2) Southern hemisphere
M. galloprovincialis-like mussels, (3) Northern hemi-
sphere M. galloprovincialis, (4) M. edulis, (5) M. chilensis

from Chile and (6) M. platensis from Argentina, including
mussels from the Falkland Islands and Kerguelen Islands
(Fig. 2).

Correspondence analyses (CA) carried out on 17 sam-
ples (i.e., excluding M. trossulus, for higher resolution of
results) resolved five groups: the reference M. edulis,
Southern hemisphere M. galloprovincialis-like, Northern
hemisphere M. galloprovincialis, the NZ Southern
Ocean islands, and M. platensis with M. chilensis includ-
ing the Falkland Islands and Kerguelen Islands samples
(Fig. 3a). The first two axes explained 66% of the total
variation. Axis 1 (44% of variation) revealed a separation
between M. galloprovincialis, M. edulis and M. platensis
from M. chilensis. Axis 2 (22% of variation) revealed a
separation between M. galloprovincialis populations
from the Northern and Southern hemispheres and M.
platensis from M. chilensis. CA carried out for individ-
uals (Fig. 3b) revealed that mussels from the Kerguelen
Islands exhibited overlap with the M. platensis and M.
chilensis individuals, whereas mussels from the Falkland
Islands exhibited far more overlap with M. platensis than
with M. chilensis. Tasmanian mussels clustered together
between Southern and Northern hemisphere M. gallopro-
vincialis. NZ Southern Ocean island individuals clustered
between Southern hemisphere M. galloprovincialis-like
mussels from mainland NZ and M. chilensis. CA of the
Chile, Argentina, Falkland Islands and Kerguelen Islands
mussels (Fig. 3c) revealed clear separation of samples
based on geography, with the Falkland Islands and
Kerguelen Islands mussels showing greater similarity to
M. platensis than to M. chilensis. The same CA based on
individuals (Fig. 3d) revealed limited overlap of the
Kerguelen Islands mussels with the M. chilensis, and no
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between 16 Mytilus spp. samples based on the F distance measures obtained with POPTREEW and visualised with MEGA version 6
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overlap of the Falkland Islands mussels with the M. chilen-
sis. Considerable overlap was revealed for both the
Falkland Islands and Kerguelen Islands mussels with M.
platensis. Whilst axis 1 (66.8% of the total variation) ex-
plained the differentiation of M. chilensis from all other
mussels, axis 2 (13.1%) contributed to explaining the sep-
aration amongst the Falkland Islands, Kerguelen Islands
and M. platensis samples, although there was still some
overlap amongst these individuals.

STRUCTURE analysis revealed the presence of six
main clusters, although the largest increase in AK was
obtained for K=2, and then K=3 and K=6. For K=2
only M. trossulus was separated from all other Mytilus
taxa, whilst K'=3 clusters corresponded to M. trossulus,
M. edulis together with M. galloprovincialis, and all
other groups. Further subdivision was suggested due to
the high value of AK for K=6, where samples from
Argentina (M. platensis), Chile and southern Argentina
(M. chilensis), and New Zealand and Australia-Tasmania
(Southern hemisphere M. galloprovincialis-like) were
assigned to distinct clusters (Fig. 1, Additional file 1:
Figure S1).

In STRUCTURE for K=6 the reference individuals
(M. edulis, M. trossulus, M. galloprovincialis, M. chilen-
sis and M. platensis) were assigned to their original

samples (taxa) with q values > 0.8. In contrast, individual
assignments for Falkland Islands, Kerguelen Islands and
Tasmania samples, which were influenced by intro-
gression, were frequently intermediate with as much as
23, 25 and 20%, respectively, of samples showing q
values between 0.2 and 0.8. Most individuals from the
Falkland Islands and the Kerguelen Islands were
assigned to M. platensis, whilst other individuals were
considered potentially admixed (M. chilensis x M. pla-
tensis). Three individuals from the Kerguelen Islands
population of Henri Bossiere Fjord clustered with M.
chilensis. Individuals with genome admixture were
assigned to two clusters, M. chilensis and M. platensis.
In total, 75% of individuals from Tasmania were assigned
to the Southern hemisphere M. galloprovincialis-like
cluster, one individual (5%) was identified as non-native
Northern hemisphere M. galloprovincialis, and the
remaining individuals from Tasmania were identified as
admixed, being assigned to Northern hemisphere M. gallo-
provincialis x Southern hemisphere M. galloprovincialis-
like. The NZ Southern Ocean island mussels exhibited very
high levels of admixture: 13 (27%) individuals were
assigned to Southern hemisphere M. galloprovincialis-like
with q values > 0.8, whereas all other individuals were
assigned to two clusters, mainly to Southern hemisphere
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M. galloprovincialis-like x M. chilensis but also to Southern
hemisphere M. galloprovincialis-like x M. platensis.

In total, 94% of individuals were correctly assigned to
their location of origin using GeneClass2. Potentially
admixed individuals from the Falkland Islands and the
Kerguelen Islands were assigned to their original loca-
tion or to the Argentinian sample (M. platensis) from
Isla de los Pajaros (IPL). Likewise, most of the poten-
tially admixed Tasmanian and NZ Southern Ocean
islands individuals were assigned to their original loca-
tion, or to mainland New Zealand (Additional file 5:
Table S4 assignments).

Hybridisation and introgression

In total, 14% of individuals from the Falkland Islands
and 28% of individuals from the Kerguelen Islands were
identified as F2 hybrids (M. chilensis x M. platensis). F1
hybrids and backcrosses were not detected in the
Falkland Islands or Kerguelen Islands samples. In con-
trast, amongst mussels from the NZ Southern Ocean,

45% of Auckland Islands individuals and 90% of
Campbell Island individuals were influenced by hybridisa-
tion and introgression. They were also identified as F2 hy-
brids (mainly Southern hemisphere M. galloprovincialis-
like x M. chilensis or Southern hemisphere M.
galloprovincialis-like x M. platensis). Hybrid and back-
cross individuals were not detected in the Tasmanian
population.

Discussion
Phylogeography
Building on the recent descriptions of native blue mus-
sels from Southern hemisphere locations, such as New
Zealand [4], Chile [13] and Argentina [63], we show that
mussels from the Southern Ocean islands are native and
very different from the three recognised Northern hemi-
sphere reference taxa of M. edulis, M. galloprovincialis
and M. trossulus.

Native mussels from the Falkland Islands and the
Kerguelen Islands showed greatest affinity to native
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mussels from the Atlantic coast of Argentina, that is, to
M. platensis d'Orbigny, 1846 [63]. The separation of this
group of South Atlantic Ocean and South Indian Ocean
mussels is very well supported by the SNPs analyses that
clearly differentiate it from all other blue mussel groups
in the Northern and Southern hemispheres. Previously,
Lamy [88] had recognised three species in this part of
the world, based on shell morphological differences,
including M. chilensis from Chile, M. platensis from
Argentina and M. desolationis from the Kerguelen
Islands. Subsequently, these mussels have been described
as being M. edulis-like (that is, most similar to Northern
hemisphere M. edulis) by a number of authors, based on
a range of genetic markers and also on shell morpho-
metric analyses, e.g. [26, 89, 90]. Here, a reasonably
small panel of SNPs can correctly assign 91% of the
Falkland Islands and also 91% of the Kerguelen Islands
mussels (M. platensis-like) to their sampling group
(native range), this being the highest value of correct as-
signment observed for all Southern hemisphere island
blue mussel populations. In a broader perspective, when
compared using the SNP markers to reference mussels
from the Northern hemisphere, the M. platensis group
shows greatest affinity to M. edulis, then to M. gallopro-
vincialis and then to M. trossulus. At a broad level of in-
terpretation, the SNPs-based results are consistent with
earlier suggestions that M. platensis is “M. edulis-like”, but
because of the high degree of species-specific definition
across the SNPs panel, a quantifiable genetic difference
exists amongst the four groups to allow us to differentiate
M. platensis from M. chilensis and all Northern hemi-
sphere species as a separate evolutionary lineage.

As assessed by SNP variation, the native mussels from
Tasmania, from mainland New Zealand (NZ) and from
the two groups of NZ Southern Ocean offshore islands
(the Auckland Islands and the Campbell Islands) formed
a group distinct from all other groups. This group has
variously been «called M. planulatus in Australia
(Lamarck [91]), M. aoteanus or M. edulis aoteanus in
New Zealand (Powell [92]), and Southern hemisphere
M. galloprovincialis [93, 94]. McDonald et al. [26] had
previously noted that mussels from Australia and NZ
were similar in allozyme allele frequencies and shell
morphology to Northern hemisphere M. galloprovincia-
lis, and went on to note that such Southern hemisphere
mussels are likely to be native, rather than introduced.
The SNPs markers identify this group as being quite dis-
tinct from other Southern hemisphere mussels from
both coasts of South America and from the other re-
mote oceanic islands. Within this group, the mainland
NZ population (Akaroa in the South Island) and the
Australian sample from Port Arthur (Tasmania) called
tentatively M. planulatus show greatest affinity and are
differentiated from the NZ Southern Ocean remote
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island samples called tentatively M. aoteanus, with greater
(e.g., the CA) or lesser (e.g., bootstrap values on the NJ tree)
support. The Tasmanian, Campbell Island and Auckland
Islands mussels can be assigned correctly to their sampling
locations with 90, 83 and 80% accuracy. When compared
to reference samples from the Northern hemisphere the
mussels from this ‘Australasian’ group show greatest affinity
to M. galloprovincialis, with the Tasmanian mussels show-
ing greater affinity than the NZ mussels.

Genetic connectivity and physical flow

The overall patterns of Mytilus Southern hemisphere
island phylogeography as assessed using SNPs are re-
markably consistent with the geography of sample loca-
tions, and with proximity to the major landmasses and
their native mussels, as now reported using SNPs. This
strongly suggests that natural long distance dispersal
events have played a key role in the establishment of
mussel populations on remote oceanic islands through
the Southern Ocean.

Direction of ocean current in the Southern Ocean is
from west to east, with a strong circular pattern of current
at approx. 50-55° S that connects, to a greater or lesser
extent, all land masses in the Southern hemisphere and
many of the remote oceanic islands [95]. It is therefore
not surprising that the native mussels of the Falkland
Islands, or even of the Kerguelen Islands, show greatest af-
finity to the native mussels of Argentina (M. platensis),
and that the different regions of the Southern hemisphere
(Pacific coast of South America, Atlantic coast of South
America, Australasia) are characterised by their own
mussel lineages. As an aside, it is both interesting and sur-
prising that South Africa alone as a major landmass in the
Southern hemisphere was not colonised naturally by blue
mussels (Mytilus sp. is a recent invader in South Africa -
[96, 97]). This might be explained by the fact that
southern Africa is in warm-temperate waters, north of the
major Southern hemisphere west-to-east flow of cold-
temperate and cold current that connects all other land-
masses to the south [98].

Physical flow, and therefore connectivity in terms of
pelagic larval dispersal (mussels typically have a 28 day
pelagic larval duration which may be extended by cooler
(oceanic) water temperatures — Bayne [99]), and/or raft-
ing of juvenile or adult mussels on kelp [6, 100], will
promote connectivity between regions. In contrast,
major features such oceanic fronts may act as barriers to
gene flow (connectivity) between regions, and may give
rise to separate biogeographic faunas, both in shallow
and deep waters (e.g. [98, 101-103] and references
therein). Understanding the apparent conflicting effects
of isolation caused by features such as oceanic fronts,
which may give rise to different evolutionary lineages,
and the promotion of gene flow via indirect mechanisms
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such as rafting, which may give rise to population-to-
population connectivity or promote natural hybridisation
between differentiated lineages, is a major challenge for an
improved understanding of the marine biogeography of
the Southern hemisphere. For example, oceanic fronts
may act as barriers to gene flow over long (evolutionary)
timescales, but may be semi-permeable (subject to jetting
and incursions) at shorter timescales and in different
places, e.g. [1, 104]. Indeed, there is increasing evidence in
the Southern hemisphere of both cryptic speciation
(different evolutionary lineages) of many groups of marine
organisms, including crustaceans, echinoderms, molluscs,
macroalgae and nematodes [1] and of long distance trans-
port of kelps and kelp-associated organisms [8, 105]. Our
results for Southern hemisphere blue mussels support this
increasing body of biogeographic work and point to the
importance of isolating features that may give rise to sep-
arate evolutionary lineages, and also the role that natural
hybridisation may play in speciation on remote oceanic
islands when connectivity is promoted, perhaps by a nat-
ural process such as rafting.

Because SNPs are co-dominant nuclear markers they are
a powerful tool for the investigation of hybridisation and
introgression that may occur, either naturally when two or
more species/taxa share natural distributions [72, 106] or
when one species (most often, Northern hemisphere M.
galloprovincialis) has been introduced by human activity
into the range of another, native species [4, 13, 16, 63].
Some SNP alleles that are characteristic of Northern
hemisphere M. trossulus and M. edulis, but not of M.
galloprovincialis, were observed in Southern hemisphere
island populations, often at high frequency (e.g. BM101A,
BM115B, BM12A, BM17B and BM61A - Additional file 3:
Table S2). This situation has previously been reported for
mussels from the NZ Southern Ocean islands [4]. SNP loci
containing these alleles did not depart from Hardy-Wein-
berg Equilibrium, suggesting that these may be ancestral
polymorphisms and that these loci may be evolutionarily
conserved. However, a single specimen of Northern hemi-
sphere M. galloprovincialis has been observed in Tasmania.

Most individuals identified as being potentially admixed
individuals were indeed influenced by hybridisation and
introgression. However, the extent of hybridisation and
introgression varied from location to location. Although no
F1 hybrids or backcross mussels were detected at either
the Falkland Islands or the Kerguelen Islands, the Falkland
Islands mussels showed a lower percentage of F2 mussels
(M. platensis x M. chilensis) than did the Kerguelen Islands
mussels (14% vs 28%), despite the latter being ~ 7800 km
to the east, that is, further from the presumptive source of
mainland South American populations. Putative hybrids of
M. chilensis x Northern hemisphere M. galloprovincialis
and also of M. chilensis x M. trossulus in several southern
Chile mussel populations were reported with a single DNA
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marker (PCR-RFLP of Me 15-16) by Larrain et al. [107].
The restriction site of the RFLP-PCR Mel5-16 assay
[18, 108, 109] corresponds to SNP BMI151A in this
study. Allele T was found only in reference samples from
Chile (M. chilensis) and New Zealand (M. galloprovincia-
lis-like from Southern hemisphere), whereas allele G was
found in the remaining locations (Northern hemisphere
M. edulis, M. galloprovincialis, M. trossulus and Argentin-
ian M. platensis). Thus, SNP BM151A cannot be treated
as a diagnostic marker for Southern Hemisphere mussels.

Consistent with earlier work [4], but employing a new
analytical approach, we identified high levels of hybrid-
isation and introgression amongst mussels of the
Auckland Islands (45%) and Campbell Island (90%), two
remote NZ island groups separated by ~280km in the
Southern Ocean. All such mussels were F2 hybrids (no
F1 hybrids or backcrosses were identified) of Southern
hemisphere M. galloprovincialis-like mussels and either
M. chilensis or M. platensis. In contrast, one invasive
Northern hemisphere M. galloprovincialis individual was
identified from Port Arthur (Tasmania, Australia) amongst
native Southern hemisphere M. galloprovincialis-like mus-
sels. Hybrids and backcrosses were not identified. Inter-
preting the Tasmanian results with published data need to
be carried out with care, given that earlier studies have
used different markers and samples from different loca-
tions, e.g. [18, 93, 94, 110-113].

Conclusions

Native mussels from the Falkland Islands and the
Kerguelen Islands showed greatest affinity to native
mussels from the Atlantic coast of South America, that
is, to M. platensis. The native mussels M. planulatus.
From Tasmania and from mainland New Zealand (NZ),
and tentative M. aoteanus from the two NZ Southern
Ocean offshore islands (the Auckland Islands and
Campbell Island) formed a M. galloprovincialis—like
Southern hemisphere group. Invasive Northern hemi-
sphere M. galloprovincialis was identified from Port
Arthur (Tasmania, Australia). The application of SNPs
markers to smooth-shelled blue mussel phylogeography
and biosecurity illustrates the complexity of identifying
invading individuals and/or introgressed non-native
genes when population sizes may be small and rates of
invasion or introgression are very low, and/or when the
landscape of invasion is complex, with a limited number
of sites (e.g., ports and marinas) experiencing invasion
and most sites not. Such results highlight the need for
ongoing monitoring of ports and marinas as points of
entry for non-native species. It is hoped that a panel of
SNPs can now be converted into diagnostic markers and
used to rapidly and cheaply assay mussels and provide
same-day results to managers who may need to under-
stand the implications of bioinvasion and subsequent
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ecological and economic impacts on native mussels and
the ecosystems in which they live. The preservation of dis-
tinct evolutionary lineages (or Southern hemisphere spe-
cies as is increasingly becoming apparent) needs to be an
ongoing focus of conservation efforts, given that popula-
tion sizes on some of the remote offshore oceanic islands
will be small and may be more easily adversely effected by
invasion and subsequent hybridisation and introgression
than larger populations elsewhere.
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